摘要目的位于皮质下区域的病变难以安全进入。管状牵开器越来越多地被成功使用,通过最大限度地减少脑牵开创伤和径向分布压力来进入病变,并发症少。双目手术显微镜和单目外窥镜均可用于通过管状牵开器观察病变。我们提出了最大规模的多外科医生、多机构系列研究,以确定经皮质-经管状方法切除颅内病变的有效性和安全性,同时实现显微镜和外窥镜可视化。方法我们回顾了一系列多外科医生、多机构病例,包括使用 BrainPath(NICO,印第安纳州印第安纳波利斯)或 ViewSite 脑通路系统(VBAS,Vycor Medical,佛罗里达州博卡拉顿)管状牵开器(n = 113)进行经皮质-经管状颅内病变切除术。结果共进行了 113 例颅内病变经管状切除术。患者的病变种类多样,包括 25 例海绵状血管瘤(21.2%)、15 例胶质囊肿(13.3%)、26 例胶质母细胞瘤(23.0%)、2 例脑膜瘤(1.8%)、27 例转移瘤(23.9%)、9 例神经胶质瘤(7.9%)和 9 例其他病变(7.9%)。病变深度低于皮质表面的平均深度为 4.4 cm,平均病变大小为 2.7 cm。81 例(71.7%)患者实现了全切除。永久性并发症发生率为 4.4%。一名患者(0.8%)出现一次术后早期癫痫发作(术后 < 1 周)。没有患者出现晚期癫痫发作(> 1 周随访)。术后平均住院时间为 4.1 天。结论管状牵开器为切除颅内病变提供了微创手术通道。它们为神经外科器械库提供了一种有效的工具,可以切除皮质下病变且并发症发生率低。
在土木工程和运输工具中,AHSS 钢发挥着重要作用 [1÷5]。为了提高车辆支撑结构元件的可用性,目标是在保持车辆重量的同时提高其强度。使用 AHSS 钢等新材料需要对这些元件的连接技术进行变革。首先,传统的焊接方法无法获得预期的效果,即获得耐用且高强度的焊接接头,其抗拉强度接近原生材料的抗拉强度。所分析的由 AHSS 钢制成的结构元件的强度高达 1200 MPa,比 MAG 工艺中获得的焊缝强度高出约 40%。首次决定检查新开发的使用微喷射冷却的技术是否适用于焊接 DOCOL 1200M 钢,是否会影响焊接接头的可用质量,最重要的是,提高获得的焊缝的抗拉强度 [6,7]。本文旨在介绍选定的测试结果及其分析,以选择新开发的用于连接由 AHSS(先进高强度钢)制成的移动平台元件薄壁结构的技术的焊接参数。
摘要 目前评估个体人类癌症药物反应的方法通常不准确、成本高或速度慢。快速直接评估患者癌症组织对药物或小分子反应的功能性方法为改善药物测试提供了一种有希望的方法,并有可能为个体患者确定最佳治疗方法。我们开发了一个数字化制造的微流体平台,用于对完整的癌症切片培养物进行多路复用药物测试,并展示了该平台在评估人类胶质瘤异种移植和患者肿瘤活检切片培养物中的药物反应方面的应用。这种方法保留了大部分组织微环境,可以在手术后几天内迅速提供结果,以指导选择有效的初始疗法。我们的研究结果为癌症药物测试和开发建立了一个有用的临床前平台,并有可能改善癌症个性化医疗。
摘要 — 3D 集成技术在半导体行业得到广泛应用,以抵消二维扩展的局限性和减速。高密度 3D 集成技术(例如间距小于 10 µ m 的面对面晶圆键合)可以实现使用所有 3 个维度设计 SoC 的新方法,例如将微处理器设计折叠到多个 3D 层上。但是,由于功率密度的普遍增加,重叠的热点在这种 3D 堆叠设计中可能是一个挑战。在这项工作中,我们对基于 7nm 工艺技术的先进、高性能、乱序微处理器的签核质量物理设计实现进行了彻底的热模拟研究。微处理器的物理设计被分区并以 2 层 3D 堆叠配置实现,其中逻辑块和内存实例位于不同的层(逻辑位于内存上的 3D)。热仿真模型已校准到采用相同 7nm 工艺技术制造的高性能、基于 CPU 的 2D SoC 芯片的温度测量数据。模拟并比较了不同工作负载条件下不同 3D 配置的热分布。我们发现,在不考虑热影响的情况下以 3D 方式堆叠微处理器设计会导致在最坏情况下的功率指示性工作负载下,最高芯片温度比 2D 芯片高出 12°C。这种温度升高会减少在需要节流之前运行高功率工作负载的时间。但是,逻辑在内存上分区的 3D CPU 实现可以将这种温度升高降低一半,这使得 3D 设计的温度仅比 2D 基线高 6°C。我们得出结论,使用热感知设计分区和改进的冷却技术可以克服与 3D 堆叠相关的热挑战。索引术语 —3D 堆叠、面对面、热
摘要:本文提出了一种星体跟踪算法,使用智能手机等商用现货 (COTS) 移动设备确定纳米卫星、无人机和微型无人机等自主平台的精确全球方向。这种星体跟踪尤其具有挑战性,因为它基于现有的摄像机,这些摄像机可以捕捉天空的部分视图,并且应该连续自主地工作。所提框架的新颖之处在于计算效率和星体跟踪器算法使用经济实惠的 COTS 移动平台应对噪声测量和异常值的能力。所提出的算法已在几个流行平台上实现和测试,包括:Android 移动设备、商用微型无人机和 Raspberry Pi。报告的方向的预期精度为 [0.1 ◦ ,0.5 ◦ ]。
不同实验室和技术对 MRD 的评估可能存在差异,从而导致不一致的结果。许多临床实验室开发了自己的协议,这可能会影响 MRD 测量。技术可能具有不同的性能特征。样本采集程序也可能不同。但是,标准化方法可以确保不同技术和实验室之间获得的结果一致。这包括标准化的骨髓 (BM) 或血液样本采集后时间、标准化的样本处理、预定的 MRD 阈值以及准确报告测试的性能特征(例如准确度、精确度、特异性、灵敏度)。例如,在没有检测限信息的情况下报告 MRD 阴性结果是没有意义的。
ZDENěKDVO营1‡*,Felix Kopp 2‡,Cait M. Costello 17,Jazmin S.Kemp 17,Hao Li 3‡,AnetaVrzalová1‡Martinaštěpánková1,IvetaBartoňková1 1,拉斯·U。 Beck 4,Sandhya Kortagere 11 *,Michelle C. Neary 12、Aneesh Chandran 13、Saraswathi Vishveshwara 13、Maria M. Cavalluzzi 14、Giovanni Lentini 14、Julia Yue Cui 15、Haiwei Gu 16、John C. March 17、Shirshendu Chaterjee 18、Adam Matson 19、Dennis Wright 20、Kyle L. Flannigan 21、Simon A. Hirota 21、R. Balfour Sartor 22、Sridhar Mani 3、* 1 来自帕拉茨基大学细胞生物学和遗传学系,奥洛穆茨 78371,捷克共和国;美国纽约州布朗克斯市阿尔伯特爱因斯坦医学院 2 生物化学系、3 医学、遗传学和分子药理学系及 4 病理学系,邮编 10461; 5 辛辛那提儿童医院医疗中心,俄亥俄州辛辛那提 45229; 6 宾夕法尼亚州立大学农业科学学院兽医与生物医学科学系,宾夕法尼亚州立大学公园,16802,美国; 7 斯洛伐克科学院 BMC 实验内分泌研究所,Dúbravská cesta 9, 845 05 布拉迪斯拉发,斯洛伐克共和国; 8 约翰霍普金斯大学生物系,马里兰州巴尔的摩 21218,美国; 9 北卡罗来纳大学化学系,北卡罗来纳州教堂山 27599; 10 纽约大学医学院病理学系,纽约,NY 10016; 11 美国德雷塞尔大学医学院微生物学和免疫学系,宾夕法尼亚州费城 19129; 12 纽约城市大学亨特学院化学系,纽约 NY 10065; 13 印度科学研究所分子生物物理学部,班加罗尔 560012,印度; 14 巴里阿尔多莫罗大学药学系 - 药学科学,意大利巴里 70125; 15 华盛顿大学环境与职业健康科学系,华盛顿州西雅图 98105; 16 亚利桑那州立大学健康解决方案学院代谢和血管生物学中心,亚利桑那州斯科茨代尔 85259; 17 康奈尔大学生物与环境工程系,纽约州伊萨卡 14853; 18 纽约市立大学城市学院数学系,纽约州,纽约州 10031; 19 康涅狄格大学儿科和免疫学系,康涅狄格州法明顿 06030; 20 康涅狄格大学药学系,康涅狄格州斯托尔斯 06269-3092; 21 卡尔加里大学生理学和药理学系,加拿大阿尔伯塔省卡尔加里 T2N 4N1; 22 胃肠生物学和疾病中心、医学部、胃肠病学和肝病学分部、北卡罗来纳大学教堂山分校,北卡罗来纳州教堂山 27599,美国 $ 现住址:圣埃德蒙学院,西隆,Old Jowai Road,西隆,梅加拉亚邦 793003,印度
[38] ................................................ ……………………………… ...................................................... 46
我们开发了一种使用微扫视动态来测量分层表面视觉搜索任务所施加的任务难度/认知负荷的方法。先前的研究提供了一致的证据表明任务难度/认知负荷会影响微扫视活动。我们证实了这一观点。具体而言,我们在视觉搜索地形表面中嵌入的特征时探索这种关系,在任务期间允许眼睛自由移动。我们做出了两个相关的贡献。首先,我们验证了一种区分视觉搜索的环境和焦点阶段的方法。我们表明,这种视觉行为范围可以通过一个先前报告的估计量(称为 Krejtz 的 K 系数)来量化。其次,我们使用基于 K 的环境/焦点段作为响应任务难度的微扫视分析的调节因素。我们发现,在视觉搜索的聚焦阶段,(a) 微扫视幅度显著增加,(b) 微扫视速率显著降低,任务难度增加。我们得出结论,结合使用 K 和微扫视分析可能有助于构建有效的工具,这些工具可在执行任务时指示任务内的认知活动水平。
BS EN 779:2012 提供了一种检查空调系统中使用的空气过滤器过滤性能的系统。使用 BS EN 779 的修订版本将确保对空调系统中使用的空气过滤器的质量和性能进行更严格的检查。这反过来会改善室内工作环境的空气质量。本标准中使用的测试程序基于数十年来开发的成熟技术,但使用现代数字仪器。空气过滤涉及的多种机制很复杂,难以建模,因此测试技术本身也变得复杂。其结果是,就空气过滤器在去除大气颗粒物空气污染方面的有效性而言,其性能分级无法重复进行。使用人工(合成)颗粒污染的测试用于对这些过滤器进行分级。BS EN 779:2012 测试系统根据空气过滤器的颗粒去除能力对其进行分级(排名)。在过滤器的使用寿命期间,该能力会发生变化,可能会显著增加或减少。本标准的用户需要注意,分类表和其他地方出现的术语“平均效率”是一个测试参数,仅与在人工测试条件下使用人工测试污染进行的测试有关。在测试程序中获得的此参数值与通风系统中空气过滤器的安装性能不对应或直接相关。此值不能用于估计或预测这些过滤器在去除颗粒大气污染方面的有效性。相反,“最低效率”是最低性能标准。在正常工作条件下,过滤器的颗粒去除能力不会低于此值。BSI 专家与 CEN 和 ISO 的专家一起,积极支持 ISO 项目,为用于一般通风的空气过滤器制定新的性能标准。新标准计划于 2015 年发布,并将根据过滤器在去除颗粒物空气污染方面的表现对其进行排名。