碳纳米管 (CNT) 具有独特的结构和电气性能,其特性非常值得研究。场效应晶体管技术中 CNT 的小结构可以生产出性能更佳的小型器件。这项工作采用了田口方法来优化碳纳米管场效应晶体管 (CNTFET)。使用 Minitab 19 软件进行田口方法分析。选择了三个尺寸的三个设计参数(CNT 的直径、间距和 CNT 的数量)来提高 CNTFET 的性能。使用 L27 正交阵列和信噪比 (SNR) 来收集和分析数据。使用方差分析验证了田口方法的结果。分析结果显示了三个设计参数的最佳组合,在高功率和低功率应用方面产生了最佳性能。影响 CNTFET 电流特性的最主要设计参数是 CNT 直径,其对导通电流 (Ion)、关断电流 (Ioff) 和电流比 (Ion/Ioff) 的影响分别为 59.93%、96.15% 和 99.14%。通过确定 CNTFET 中最主要的结构,可以进一步优化器件。最终,CNTFET 器件可以在高功率和低功率应用方面得到增强。
本研究尝试设计全加器中的高性能单壁碳纳米管 (SWCNT) 束互连。为此,使用 HSPICE 软件中的仿真研究了电路性能,并考虑了 32 纳米技术。接下来,使用田口方法 (TA) 分析了几何参数(包括纳米管直径、束中纳米管之间的距离以及束的宽度和长度)对全加器中 SWCNT 束互连性能的影响。田口灵敏度分析 (TSA) 的结果表明,束长度是影响电路性能的最有效参数(约占功率耗散的 51% 和传播延迟的 47%)。此外,与其他参数相比,纳米管之间的距离对响应的影响很大。此外,响应面法 (RSM) 表明,增加互连长度 (L) 会提高功率耗散的输出。随着互连线宽度 (W) 和碳纳米管直径 (D) 的增加,功耗也增加。减小束中碳纳米管之间的距离 (d) 会导致功耗增加。如果考虑互连线长度和宽度 (L、W) 以及碳纳米管直径 (D) 的参数的最大值以及束中碳纳米管之间距离 (d) 的最小值,则功耗最高。结果还表明,互连线长度 (L) 的增加会增加传播延迟。最后,报告了最佳参数,并使用不同方法 (TA 和 RSM) 比较了优化系统的性能。结果表明,用不同方法预测的全加器中 SWCNT 束互连线最优设计的性能差异小于 6%,根据工程标准是可以接受的。