摘要:自由空间光学(FSO)通信提供的数据率的增加至关重要。在卫星和行星际网络中使用时,这些光学链路可以确保快速连接,但它们容易受到大气中断和长轨道延迟的影响。延迟和破坏耐受网络(DTN)体系结构可确保两个末端节点之间的可靠连接,而无需直接连接。与FSO链接一起使用时,这可以是资产,提供可以处理连接间歇性质的协议。本文对FSO和DTN的理论和最新研究进行了综述。这篇评论的目的是为研究无线卫星网络的研究提供动力,重点是使用Licklider传输协议。提出的评估确定了这些网络的可行性,提供了许多需要依靠的例子,并总结了所涉及的技术开发的最新阶段。
Khodr, M. 使用三级多光子协议在 1550nm、1310nm 和 850nm 处实现的最大距离评估《CYBER 2017:第二届网络技术和网络系统评估国际会议论文集》,第 32-34 页。西班牙巴塞罗那,2017 年 11 月 12-16 日
自由空间光学 (FSO) 系统是支持下一代无线系统及更高版本的高数据速率要求的有希望的候选系统 [1]。具体而言,与光纤链路相比,FSO 系统的部署速度更快、成本更低,同时与射频 (RF) 系统相比,能够以更低的成本和更轻的设备重量提供几 Gbps 的数据速率 [2],[3]。此外,由于 FSO 系统采用窄激光束,因此本质上是安全且无干扰的。这些特性使 FSO 系统成为卫星、无人机/气球和地面通信(特别是无线前传和回传)的有吸引力的选择 [1]–[3]。尽管 FSO 系统具有上述优势,但它们也面临着一些挑战,例如易受大气湍流影响、指向误差以及恶劣天气条件下的高衰减。过去几年,人们已经开发出适当的对策来克服这些挑战,包括多输入多输出 (MIMO) FSO 系统和混合 RF/FSO 系统 [2]。然而,这些技术无法克服发射器 (Tx) 和接收器 (Rx) 之间视线 (LoS) 链路的要求,这是 FSO 系统的一个根本性持续限制。目前,解决此问题的唯一可行方法是部署光中继节点。然而,这种中继节点价格昂贵且不方便,因为它们需要大量额外的硬件部署。另一方面,对于 RF 通信系统,智能反射面
b'摘要 提出了一种毫米波\xe2\x80\x90 低\xe2\x80\x90 轮廓宽带微带天线。为了加宽阻抗带宽并同时实现稳定的大增益,在由同轴探针馈电的微带贴片两侧布置共面寄生贴片阵列。在微带贴片上蚀刻双槽以降低 H \xe2\x80\x90 平面交叉\xe2\x80\x90 极化水平。提出了使用 Floquet \xe2\x80\x90 端口模型进行零\xe2\x80\x90 相位\xe2\x80\x90 反射分析以预测寄生贴片阵列的谐振频率。根据理想探针的输入阻抗来验证激发的谐振模式。依次激励两个相邻的宽边谐振,分别以微带贴片的准 \xe2\x80\x90 TM 10 模式和寄生贴片阵列的准 \xe2\x80\x90 TM 30 模式为主导。所提出的天线尺寸为 1.06 1.06 0.024 \xce\xbb 0 3(\xce\xbb 0 为自由空间中 29 GHz 的波长),在 | S 11 | \xe2\x89\xa4 10 dB 时实现 15%(27\xe2\x80\x93 31.35 GHz)的阻抗带宽。实现的峰值增益高达 9.26 dBi,2 \xe2\x80\x90 dB 增益带宽为 15.7%。 H \xe2\x80\x90 平面交叉 \xe2\x80\x90 极化水平在 3 \xe2\x80\x90 dB 波束宽度内小于 14 dB,背部辐射水平小于 17.9 dB。'
摘要 - FEW模式纤维是接收器自由空间光学通信的重要组成部分,以获得可实现的高耦合效率。根据自由空间光学通信链接到几种模式纤维的理论耦合模型是基于一组尺度适应的Laguerre-Gaussian模式提出的。发现各种模式的效率在存在大气湍流或随机抖动的情况下的行为不同。基于此模型,获得了最佳耦合几何参数,以最大程度地提高少数模式纤维所选模式的耦合效率。研究了随机抖动的沟通性能。表明,少数模式纤维比单模纤维具有更好的位率率性能,尤其是在高信噪比的比率方面。
本研究展示了一种使用移动设备进行基于阵列的自由空间光 (FSO) 通信的机器学习 (ML) 方法。现代作战人员需要非射频 (RF) 通信方法来消除与 RF 通信相关的风险,例如检测、窃听和干扰。FSO 通信有望实现巨大的吞吐量,并具有其他优势,例如低拦截/检测概率和抗干扰性。然而,大气条件会通过在信道上引入衰落和噪声,从而显著降低实现的性能。为了提高信道弹性和吞吐量,我们在发射器处使用激光阵列采用空间代码,并在信道字母表上训练多个 ML 模型以在接收器处提供高效解码。我们在训练过程中比较了单次检测 (SSD) MobileNet 模型与 You-Only-Look-Once 模型的性能,并使用训练后的 SSD MobileNet 模型演示了通过概念验证系统进行的数据传输。我们详细介绍了概念验证的硬件和软件实现,它使用手持移动设备和一系列低成本、低功耗激光器。未来的实验计划将结合前向误差校正和在现实条件下进行更远距离的测试。
在无线通信方面,微波技术通过长期发展和大量投资,目前已形成强劲势头,并已成功满足目前正在部署的 5G 基础设施初始阶段的要求。然而,包括毫米波 (mmWave) 在内的微波解决方案在支持未来应用的更高带宽方面已达到物理上限。因此,太赫兹 (THz) 波段和中红外波段等更高频段涵盖了更宽的电磁频谱范围,有望成为突破此类限制的候选技术。[1,2] 目前已进行多项太赫兹波段高数据速率传输实验,其中许多实验借助了光子技术。[3 – 5] 另一方面,随着载波频率的提高和带宽的扩大,这些无线系统正在采用一种新模式,即信号以高增益导波的形式发射
简介量子通信网络在量子通信领域提出了革命性步骤(1,2)。尽管实际证明了量子密钥分布(QKD)(3-8),但向许多用户扩展标准的两用户QKD协议的差异已经阻止了大规模采用量子通信。到目前为止,量子网络依靠一个或多个概率特征:可信的节点(9-13)是潜在的安全风险;主动切换(14 - 17),限制了功能和连接性;最近,波长多路复用(18)具有有限的可伸缩性。量子通信研究的最终目标是,具有基于物理定律而不是计算复杂性的安全性,使得与当前的互联网相似。为了实现这一目标,量子网络必须是可扩展的,必须允许使用不同硬件的用户必须与流量管理技术兼容,不得限制允许的网络拓扑,并且必须尽可能避免避免潜在的安全风险(如受信任的节点)。到目前为止,所有人都证明了QKD网络属于三个宽大的冠军。第一类是值得信赖的节点网络(9-12),其中假定网络中的某些或所有节点被认为可以免受窃听。在大多数实用的网络中,很少能相信每个连接的节点。此外,此类网络倾向于在每个节点上同时使用发件人和接收器硬件的多个副本,从而使成本越来越高。第二类是积极切换或“访问网络”的,其中只允许某些用户一次交换密钥(19)。同样,点对点网络网络在利基应用程序中很有用,并且已使用无源束分式(BSS)(20 - 22),活动
MZI-001是基于自由空间光学器件的纤维纤维紧凑型Mach-Zehnder干涉仪,用于检测光学频率的变化。该设备配备了两个快速光电电视器,用于平衡检测干涉仪的两个互补输出。设备的自由光谱范围(FSR)或零交叉间距被准确地定义为2%以内,这比全纤维方法具有明显的优势。此外,订购时可以从10 GHz到100 GHz的高度选择FSR,从而使其灵活地进行系统集成。最后,MZI-001的自由空间光学设计消除了通常与全纤维干涉仪相关的极化灵敏度。MZI-001非常适合在波长扫描的光源中应用,以确定其瞬时频率,OCT系统作为用于系统触发的频率时钟,用于检测传感信号光谱漂移的光纤传感器,以及用于检测激光器频率漂移的相干通信系统中。
a 研究学者,国家理工学院 (NIT) ECE 系,斯利那加,J&K – 190006 b 助理教授,BGSB 大学拉朱里 (J&K)-185234 c 教授,NIT ECE 系,斯利那加,J&K – 190006 电子邮件:mubasher2003@gmail.com,gulammohdrather@yahoo.co.in 收到日期:2020 年 3 月 31 日;接受日期:2020 年 5 月 2 日;发表日期:2020 年 8 月 8 日 摘要:我们正处于通信时代,高速应用需要非常大的带宽。在可用的带宽技术中,光纤似乎是最合适、最合适的。主干网上铺设的光纤技术几乎取代了现有的同轴电缆。将光纤连接扩展到最终用户,尤其是在拥挤和偏远地区,在成本和安装时间方面是一项相当困难的任务。因此,首英里和最后一英里连接 (FLMC) 仍然是将光纤的优势扩展到网络边缘的瓶颈。在大多数应用中,从主干网到最终用户的连接是通过容量远小于光纤的无线电或铜链路进行的。考虑到新兴应用的性质和规模,需要使用适当的技术来解决 FLMC。为了解决这个问题,新兴的解决方案是光无线通信,如自由空间光学 (FSO)。由于 FSO 具有带宽大、成本低等特性,它正成为一种更有前途的替代方案。在本文中,我们讨论了通过 FSO 链路实现首英里和最后一英里连接的可能解决方案,因此可以通过 FSO 通信以可靠且经济有效的方式弥合光纤核心和网络边缘之间的差距。这项提议工作的意义给人留下了深刻的印象,即在 FLMC 中使用 FSO 通信优于现有的通信。FSO 通信可以一丝不苟地满足不断增长的高带宽需求。仿真结果表明,实现了理想的性能,并使用 Q 因子和 BER 等性能指标进行了分析。索引术语:自由空间光学、带宽要求、光无线、第一英里和最后一英里连接。术语 FSO 自由空间光学 FLMC 第一英里和最后一英里连接 RF 射频 OWC 光无线信道