1. 物质信息 N-甲基吡咯烷酮 (C 5 H 9 NO),CAS 872-50-4。同义词:N-甲基吡咯烷酮、1-甲基-2-吡咯烷酮、NMP。N-甲基吡咯烷酮在室温下为无色透明液体,沸点分别为 202°C、395.6°F。该液体不易燃。N-甲基吡咯烷酮有鱼腥味。它可与水和常见有机溶剂混溶。N-甲基吡咯烷酮着火时可能会释放一氧化碳和氮氧化物。N-甲基吡咯烷酮是一种挥发性较弱的有机溶剂,用于微电子和制药行业的化学品和树脂。它可替代其他溶剂,例如用于油漆剥离和润滑油提取;它被用作杀虫剂、涂料、粘合剂、染料、颜料、聚合物和聚氨酯泡沫清洁的溶剂。
致突变潜力:甲基强的松龙尚未正式评估其遗传毒性。但是,甲基强的松龙磺酸盐与甲基强的松龙结构相似,在鼠伤寒沙门氏菌中,浓度为 250 至 2,000 µg/板,无论是否经过代谢活化,或在使用中国仓鼠卵巢细胞进行的哺乳动物细胞基因突变试验中,浓度为 2,000 至 10,000 µg/mL,均不具有致突变性。甲基强的松龙舒普坦酸酯在浓度为 5 至 1,000 µg/mL 时,不会在原代大鼠肝细胞中诱导非计划 DNA 合成。此外,对已发表数据的审查表明,结构上与甲基泼尼松龙相似的法呢磺酸泼尼松龙 (PNF) 在鼠伤寒沙门氏菌和大肠杆菌菌株中,无论是否经过代谢活化,在 312 至 5,000 µg/板的浓度下均不具有致突变性。在中国仓鼠成纤维细胞系中,在最高测试浓度 1,500 µg/mL 下,PNF 在经过代谢活化后,结构染色体畸变的发生率略有增加。
目的:合成HER2适体结合的氧化铁纳米粒子,表面包覆聚(2-(二甲氨基)乙基甲基丙烯酸酯)-聚(2-甲基丙烯酰氧乙基磷酰胆碱)嵌段共聚物(IONPPPs)。方法:表征包括分子结构、化学组成、热稳定性、磁性、适体相互作用、晶体性质和微观特征。后续研究集中于IONPPPs用于体外癌细胞识别。结果:结果表明,二嵌段共聚物具有高生物相容性,浓度高达150 μ g / ml时无明显毒性。简便的涂层工艺产生了IONPP复合物,其具有13.27 nm的金属核和3.10 nm的聚合物涂层。用HER2靶向DNA适体进行功能化后,IONPPP通过磁化分离增强了对HER2扩增的SKBR3细胞的识别。结论:这些发现强调了 IONPPP 在癌症研究和临床应用中的潜力,并通过概念验证方法展示了诊断效果和 HER2 蛋白靶向性。
将基于多甲基丙烯酸酯/多甲基丙烯酸酯(PS/ PMMA)块共聚物组成的自组装形成的纳米骨的最佳策略投资到硅底物中。作者表明,特定问题与通过自组装获得的PS面膜的等离子体蚀刻有关。的确,由于亚15 nm接触孔的纳米尺寸及其固有的高纵横比(> 5),因此必须重新审视微电子工业中通常用于蚀刻SIO 2和硅的等离子体蚀刻过程。特别是,蚀刻各向异性依赖于特征侧壁上钝化层的形成的过程不适合纳米尺寸,因为这些层倾向于填充导致蚀刻停止问题的孔。同时,与在高方面比率纳米骨中克服差分充电效应的典型过程相比,必须增加离子轰击能。然而,通过将适当的过程(例如同步的脉冲等离子体)进行开发,作者表明,通过使用块共聚物和硬面膜策略,可以将70nm深的孔深孔进入硅。这些实验产生的另一个有趣的观察结果是,对于亚15 nm孔,几个nm的临界维度(CD)缩合会导致强大比率依赖性蚀刻速率。此外,在每个等离子体步骤之后,对孔的CD的分散体进行了仔细的分析表明,CD控制远非令人满意的高级CMOS技术要求。v C 2014美国真空学会。[http://dx.doi.org/10.1116/1.4895334]关键问题来自从PS/PMMA矩阵中的未完成的PMMA在我们的自组装过程中的去除:可变量的PMMA保留在PS孔中,从而导致蚀刻步骤中的微功能效应,从而产生CD控制损失。也许可以通过将紫外线释放酸处理与乙酸处理相结合,以在等离子体蚀刻之前提供不含PMMA残基的PS膜,以解决此问题。
此方法可以更轻松地处理非常快速的甲基丙烯酸酯类型。No-Mix方法根本不需要混合。工件表面是用快速干燥的硬化漆进行预涂层的。然后可以将干零件储存几周,也可以运输到另一个工作场所而不会显着失去反应性。一旦粘合剂接触Hardener漆,硬化就会开始而没有任何进一步的混合。此方法可用于最大距离为0.8 mm的关节间隙(两侧都有硬化漆的应用),但不适合更大的关节宽度。通过将NO-MIX方法用作“ 1组分”处理技术,可以轻松避免给药,混合物和陶器问题。该系统适用于键合操作,从单部分到系列生产。
胶粘剂 寻找快速固化剂 总部位于纽约州奥查德帕克的 Curbell Plastics 公司开发出一种快速固化、橡胶增韧的甲基丙烯酸酯胶粘剂,用于组装空心金属门。该公司表示,这种胶粘剂可提高门的质量、简化装配流程并降低门的制造成本。该公司表示,与点焊不同,这种新型胶粘剂可用于各种接头几何形状,包括盲接头,并且可对钢、塑料和玻璃纤维部件提供出色的粘合性。由于没有焊接凹坑,因此可以省去聚酯腻子填充操作,Curbell 胶粘剂和原型材料业务开发经理 Rick Delaney 表示,此举可提高门的质量、加快装配过程并降低成本。 SS® www.curbellplastics.com
1化学系,科学学院,埃及开罗纳斯尔市Al-Azhar大学。2研究与发展,埃及英国公司针对特种化学品和辅助机构,埃及。摘要本研究论文通过不同的单体组成探索了基于丙烯酰胺的同型聚合物和共聚物的产生。它强调通过部分交联的单体,尤其是甲基丙烯酸酯(UMA)来提高絮凝和凝结效率。使用FT-IR,SEM和EDX光谱工具对制备的聚合物和共聚物进行表征。当使用丙烯酸作为共晶(96.67%)(96.67%)和UMA单体(98.62%)时,絮凝效率的结果表现出显着改善,而与Magnafloc®LT27AG相关的97.89%则是97.89%。此外,这项研究提供了新的基于环保的聚合物,并易于回收的潜在材料与可持续发展目标保持一致。关键词:聚丙烯酰胺;水处理;絮凝剂;逆乳液聚合1。简介
开发新材料是应对电池技术挑战的关键。离子液体基聚合物电解质具有不可燃性和高热稳定性,可以降低爆炸风险。LiMPO 4 正极(M=Fe、Mn、Co……)的使用有助于提高热稳定性,这是因为金属和氧之间存在共价键。有机电极具有灵活性,可以促进可充电锂电池的回收利用。在本研究中,这些材料已被用于超安全、灵活、绿色和高倍率锂电池。使用拉曼、XPS、DSC 和介电光谱研究了它们的物理性质,并结合一些 LiMPO 4 正极探索了离子液体基聚合物电解质的电化学性能。研究了离子配位、离子电导率、氧化稳定性、电极材料的溶解和电化学性质。为了克服有机电极材料含碳量高、活性物质溶解等缺点,本文还研究了新型纳米纤维有机自由基聚合物[(聚(2,2,6,6-四甲基哌啶氧-4-基甲基丙烯酸酯)(PTMA)]电极、含有甲氧基官能团(CH3O)的新型有机正极材料2,3,6,7,10,11-六甲氧基三苯并菲(HMTP)]和Py14TFSI基聚合物电解质。
这项研究介绍了一种新的方法,用于使用人工神经网络(ANN)和响应表面方法(RSM)进行生物相容性聚乳酸(PLA)/聚甲基甲基丙烯酸酯(PMMA)混合。目标是优化PMMA含量,喷嘴温度,栅格角度和打印速度,以增强形状记忆力和机械强度。材料,PLA和PMMA是融化的,并使用基于颗粒的3D打印机打印4D。差异扫描量热法(DSC)和动态机械热分析(DMTA)评估混合物的热行为和兼容性。ANN模型与RSM模型相比,ANN模型表现出了出色的预测准确性和概括能力。实验结果显示,形状回收率为100%,最终拉伸强度为65.2 MPa,明显高于纯PLA。用优化参数打印的生物螺旋螺旋体展示了出色的机械性能和形状的记忆行为,适用于生物医学应用,例如骨科和牙科植入物。本研究提出了一种用于4D打印PLA/PMMA混合物的创新方法,强调了它们在创造先进的高性能生物相容性材料方面的潜力。
这项迷你审查将重点放在过去3年中乙烯基聚合物的光催化升级和解聚的发展。首先简要讨论聚苯乙烯的升级,以及有关其他不可生物降解聚合物的升级的最新报道。有关聚苯乙烯升级的全面摘要,鼓励读者参考最近的出色评论。[6,7b,c,8]相反,这项迷你综述旨在对乙烯基聚合物的光催化降解进行严格讨论,包括聚甲基丙烯酸酯,聚丙烯酸酯,聚丙烯酸酯和其他材料,例如聚乙烯基醚。尽管当前的聚合物晶体降解策略不会像聚苯乙烯那样产生高增值的小分子,但它们可以通过高效的光催化过程将其完全解散回成单体。最后但并非最不重要的一点是,在讨论我们对令人兴奋的新方向的愿景中提供了关键的未来前景。