在 [17] 中,作者考虑了一种扭曲方案,该方案采用基于最小二乘的时间位移和对齐底层模型。Gibbons 和 Stahl [20] 也考虑了 ERP 平均的响应时间校正:作者假设 ERP 分量(尤其是后期分量)的时间会有显著变化,因此他们建议使用多项式表达式来校正响应时间,该表达式基于先前确定的平均响应时间和线性插值。[21] 中介绍了不考虑噪声、抖动或新频率的出现而迭代使用平均 DTW。在 [22] 中,作者提出了一种成本矩阵的修改,该修改可以消除在对非线性对齐的信号周期进行平均时抑制噪声的不利结果。
近年来,研究表明,经皮脊髓刺激 (tSCS) 可用于治疗脊髓损伤 (SCI) 患者的痉挛并促进其行走,其方式与硬膜外脊髓刺激 (eSCS) 类似。但对于脑损伤患者,尚未取得同样的效果。人们认为,tSCS 会影响脊髓神经网络,抑制信号会部分取代大脑的功能。人们对这一过程了解甚少。此外,脊髓与大脑的相互作用或 tSCS 对脊柱和大脑的影响并非研究重点。人们在一定程度上了解 SCI 导致的脊髓和大脑的塑性过程,但尚不清楚 tSCS 对同一器官的影响。影响下运动神经元活动的神经结构是治疗下肢痉挛的目标。这项工作将通过与大脑的连接或缺失来研究这些影响和结构。本硕士论文。项目旨在开发处理管道和测量协议,并设置和评估大脑和肌肉的同步测量,以分析和评估肌肉和运动引起的大脑电位。大脑的事件相关电位(ERP)分析和时频分析(TFA)用于估计皮质和肌肉之间时域和频域的信息。工作结果表明,通过结合脑电图(EEG)和肌电图(EMG)信号,可以研究大脑运动皮层、感觉皮层和肌肉之间的相互作用。研究结果表明,使用信号处理管道可以在EEG中检测到tSCS和髌腱反射的影响。此外,还检测了电位的潜伏期,并解释了健康和脊髓损伤之间的比较分析。因此,确定神经肌肉连接可以为康复的理论基础提供信息。