摘要:寻求经济可持续的电催化剂来代替氧气进化反应(OER)中的关键材料(OER)是电化学转化技术的关键目标,在这种情况下,金属有机框架(MOF)作为替代的电活性材料提供了很大的希望。在这项研究中,通过在氮掺杂的石墨烯上生长量身定制的基于Ni-Fe的MOF,成功合成了一系列纳米结构的电催化剂,从而创建了名为MIL-NG-N的复合系统。它们的生长是使用分子调节剂调整的,揭示了该性质的非平凡趋势,这是调节剂数量的函数。最活跃的材料表现出了出色的OER性能,其特征在于1.47 V(vs.RHE)达到10 mA cm -2,低Tafel斜率(42 mV dec -1),稳定性超过0.1 M KOH。这种出色的性能归因于唯一的MOF架构和N掺杂石墨烯之间的协同作用,从而增强了活动位点的量和电子传输的数量。与MOF和N掺杂石墨烯的简单混合物或N掺杂石墨烯上的Fe和Ni原子的沉积相比,这些杂种材料显然表现出了明显的OER性能。
摘要一系列具有SRLAAL配方1/2 m 1/2 O 4(M = M = Mn,Fe,Co)的一系列氧化物已合成,并且已经研究了其电催化活性的一半反应水,氧气裂解的一半反应,氧气进化反应(OER)和氢进化反应(她)。这些分层的氧化物由八面体配位的al/m金属组成,其中八面体被碱土/稀土阳离子分离。在合成的材料中,SRLAAL 1/2 CO 1/2 O 4显示出最佳性能,从Tafel方法评估的OER和她的OER和HE的较低的OER和她的较快反应动力学可以明显看出。通过多种因素的组合来解释SRLAAL 1/2 CO 1/2 O 4的性能,包括CO的较高的电负性引起的债券共价,以及MN和FE的较高的电负性,以及Trivalent Cobalt的良好电子构型。重要的是,电导率研究表明电荷转运与电催化活性之间的相关性,其中最活跃的催化剂还显示出最高的电导率。
通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
氢化酶(H 2 ASE)有效地将H +与H 2相互互换,其离职数(吨)(10 2 - 5 mol S -1)。1,2基于这些金属酶的活性位点存在的金属中心,三种类型的h 2 ASE在自然界中是已知的 - [Fe - Fe] H 2 ASE,[Ni - Fe] H 2 ASE和fe-fe-fe-H 2 ASE。3,4中,[Fe - Fe] H 2 ASE对H 2代的选择更具选择性,[Ni - Fe] H 2 ASE对H 2氧化是选择性的,而在氢化物受体/供体底物的前提中,仅Fe-H 2 ASE与H 2或产生H 2或产生H 2。5,6 [Fe - Fe] H 2 ASE活性位点的高分辨率X射线晶体结构表明,A Fe 2 S 2(CO)3(CO)3(CO)3(CN)2有机金属核心(2FE子站点)的一个铁中心附着于[Fe 4 s 4]通过铜氨基固醇(Schemine(Schemine 1a and B))。4,7,8键二甲基二硫代硫酸酯(ADT)部分桥梁之间的两个Fe 2 S 2 S 2(CO)3(CO)3(CN)2有机型tallic核心之间的桥梁。两个铁中心中的每个中心都与一个 - 配体和一个 - cn-配体协调。9,10 A - Co Gridges两者
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
©2023作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
Xueting Feng 1,5 , Jiyuan Liu 2,5 , Long Chen 3 , Ya Kong 1 , Zedong Zhang 4 , Zixuan Zhang 1 , 2
摘要 高熵材料因其结构的复杂性和性能的优越性已被广泛证实是一种可能的先进电催化剂。人们已做出大量努力来模拟高熵催化剂的原子级细节,以提高自下而上设计先进电催化剂的可行性。在本综述中,首先,我们概述了基于密度泛函理论的各种建模方法的发展。我们回顾了用于模拟不同高熵电催化剂的密度泛函理论模拟的进展。然后,我们回顾了用于电催化应用的高熵材料模拟的进展。最后,我们展示了该领域的前景。缩写:HEMs:高熵材料;CCMs:成分复合材料;DFT:密度泛函理论;LDA:局部密度近似;GGA:广义梯度近似;VASP:维也纳从头算模拟软件包;ECP:有效核势; PAW:投影增强波势;VCA:虚拟晶体近似;CPA:相干势近似;SQS:特殊准随机结构;SSOS:小集有序结构;SLAE:相似的局部原子环境;HEA:高熵合金;FCC:面心立方;BCC:体心立方;HCP:六方密堆积;ORR:氧还原反应;OER:氧化物析出反应;HER:氢析出反应;RDS:限速步骤;AEM:吸附质析出机理;LOM:晶格氧氧化机理;HEOs:高熵氧化物;OVs:氧空位;PDOS:投影态密度;ADR:氨分解反应;NRR:氮还原反应;CO 2 RR:CO 2 还原反应;TMDC:过渡金属二硫属化物;TM:过渡金属; AOR:酒精氧化反应;GOR:甘油氧化反应;UOR:尿素氧化反应;HEI:高熵金属间化合物。
摘要:锌 - 碘(Zn -i 2)电池对其高能量密度,低成本和固有安全性引起了极大的关注。然而,包括聚二维溶解和穿梭,碘迟发的氧化还原动力学和低电导率的几个挑战限制了它们的实际应用。在此,我们通过将Ni单原子(NISA)均匀分散在分层多孔碳骨架(NISAS-HPC)上,为Zn-I 2电池设计了高效的电催化剂。原位拉曼分析表明,由于Nisas具有显着的电催化活性,因此使用NISAS-HPC显着加速了可溶性聚二维(I 3 - 和I 5 - )的转化。带有NISAS-HPC/I 2阴极的结果Zn-I 2电池提供了出色的速率能力(在50 C时为121 mAh g-1)和超循环稳定性(在50 c时超过40 000个循环)。即使在11.6 mg cm -2碘以下,Zn -i 2电池仍然表现出令人印象深刻的循环稳定性,其容量保留为93.4%和141 mAh g -1,在10 c.关键字上10 000循环后,关键字:锌 - 碘化物 - 碘磁带,多二维,诸如乘坐,电气效应,电型,电动