摘要:离散傅里叶变换 (DFT) 是光子量子信息的基础,但将其扩展到高维的能力在很大程度上取决于物理编码,而频率箱等新兴平台缺乏实用方法。在本文中,我们表明,d 点频率箱 DFT 可以用固定的三分量量子频率处理器 (QFP) 实现,只需在 d 每次增量增加时向电光调制信号添加一个射频谐波即可。我们在数值模拟中验证了门保真度 FW > 0.9997 和成功概率 PW > 0.965,最高 d = 10,并通过实验实现了 d = 3 的解决方案,利用并行 DFT 的测量来量化纠缠并对多个双光子频率箱状态进行层析成像。我们的结果为量子通信和网络中的高维频率箱协议提供了新的机会。
摘要。本文旨在概述 PRISMA(PRecursore IperSpettrale della Missione Applicativa)任务及其相关的科学预见应用。该任务开发计划实际上处于 C 阶段,完全由 ASI 资助。PRISMA 是一种具有创新电光仪器的地球观测系统,它将高光谱传感器与全色中分辨率相机相结合,利用 ASI 在“小型任务”(例如AGILE)、高光谱有效载荷(例如Hypseo、联合高光谱任务/JHM)、卫星平台(MITA/PRIMA)以及跟踪中心和遥感数据处理中心(COSMO-SkyMed 和 CNM – 多任务国家中心)领域的投资。用户部分提供了全系列的任务产品,包括以下 0、1 和 2 级产品,适用于高光谱和全色数据:在此框架内,已开始进行五项科学研究,研究一些特定的高光谱应用主题和高光谱数据处理程序。
AN/USM-636(V) 综合自动化支持系统 (CASS) 是一种计算机辅助的多功能自动测试设备 (ATE),用于测试海军和海军陆战队中期维护活动、海军武器站、海军航空站和海军海上系统司令部支持活动中的各种电子元件。CASS 计划的目标是将电子和航空电子设备支持整合到一个标准 ATE 系统中。随着新武器系统的出现和额外测试要求的确定,CASS 计划预计将会发展壮大。CASS 计划目前处于采购阶段 III(生产、部署和运营支持)。1994 年 3 月 28 日,混合 (HYB)、通信、导航和识别 (CNI) 和射频 (RF) 配置的里程碑 III 得以实现。电光增强 (EO+) 配置里程碑 III 于 1998 年 12 月实现。初始作战能力于 1993 年 10 月实现。
摘要。本文旨在概述 PRISMA(PRecursore IperSpettrale della Missione Applicativa)任务及其相关的科学应用。该任务开发计划实际上处于 C 阶段,完全由 ASI 资助。PRISMA 是一种具有创新电光仪器的地球观测系统,它将高光谱传感器与全色中分辨率相机相结合,利用 ASI 在“小型任务”(例如 AGILE)、高光谱有效载荷(例如 Hypseo、联合高光谱任务/JHM)、卫星平台(MITA/PRIMA)以及跟踪中心和遥感数据处理中心(COSMO-SkyMed 和 CNM – 多任务国家中心)领域的投资。用户部分提供了全系列的任务产品,包括针对高光谱和全色数据的以下0级、1级和2级产品:在此框架内,已启动五项科学研究,对一些特定的高光谱应用主题和高光谱数据处理程序进行研究。
空军测试中心概况 80 多年来,爱德华兹空军基地(空军测试中心 (AFTC) 所在地)是地球上见证飞行重大里程碑最多的基地。爱德华兹空军基地占地近 301,000 英亩,位于莫哈维沙漠,毗邻北美最大的干湖床——罗杰斯干湖。AFTC 协助空军的总体任务,通过航空航天力量保卫美国并保护其利益,确保现役和未来飞行员在危险情况下作战时拥有经过验证的装备和战斗就绪的武器系统。AFTC 是空军物资司令部卓越中心,为美国及其盟国研究、开发和测试与评估航空航天系统。为了支持测试,AFTC 运营爱德华兹飞行测试靶场,该靶场由 20,000 平方英里的空域组成,包括三个超音速走廊和四个飞机旋转区。除了飞行测试能力外,爱德华兹还拥有一系列地面测试设施。其中一个设施是巨大的贝尼菲尔德消声设施,它可以在模拟飞行环境中对全集成航空电子设备进行全面测试,包括电子威胁和计算机软件检查。 AFTC 正在招聘顶尖工程师来测试世界上最先进的技术。以具有竞争力的绩效工资、招聘奖金和许多其他福利作为联邦雇员,测试未来! 职位名称 光电系统飞行测试工程师 职位描述 光电系统飞行测试工程师负责测试尖端的先进光电、红外和激光系统以及定向能技术。如果被录用,申请人将加入位于加利福尼亚州爱德华兹空军基地的空军测试中心 (AFTC) 的文职劳动力队伍。为 AFTC 工作的工程师目前正在参与测试空军的各种飞机和系统。目前正在测试的飞机包括 F-16 猎鹰、F-22 猛禽、F-35 闪电 II、B-52 同温层堡垒、B-1 枪骑兵、B-2 幽灵、C-130 大力神、C-17 环球霸王 III、RQ-4 全球鹰无人机系统等。目前正在测试的电光系统包括 SNIPER 和 LITENING 先进瞄准吊舱、ROVER 便携式视频下行链路系统、F-35 电光瞄准系统 (EOTS)
履行国防战略(对抗环境中的联合杀伤力)中众多近战作战计划 (OPLANS) 和应急计划 (CONPLANS)。第四代敌机、先进的“两位数”防空导弹系统和其他威胁系统的扩散对 F-15 的生存能力构成了重大威胁。因此,有必要对 F-15 平台进行投资,以确保它在 21 世纪仍然可行。F-15 Eagle 被动主动预警和生存系统 (EPAWSS) 取代了传统的、模拟的、功能过时的 F-15 战术电子战系统。F-15 EPAWSS 是 21 世纪的数字电子战套件,包括电子检测和识别、地理定位、电子对抗(干扰)和对抗投放(箔条/照明弹),为现代战斗提供先进的、改变游戏规则的能力。具体而言,EPAWSS 使 F-15 能够检测、识别和定位射频 (RF) 威胁,以及在具有密集 RF 背景的对抗环境中拒绝、降低、欺骗、破坏和击败 RF 和电光/红外威胁系统。
摘要 —频率编码量子信息为量子通信和网络提供了有趣的机会,基于电光相位调制器和傅里叶变换脉冲整形器的量子频率处理器范式为可扩展的量子门构建提供了途径。然而,迄今为止的所有实验演示都依赖于占用大量物理空间并产生明显损耗的离散光纤元件。在本文中,我们介绍了一种量子频率处理器的设计模型,该模型包括基于微环谐振器的脉冲整形器和集成相位调制器。我们估计了单个和并行频率箱 Hadamard 门的性能,发现了扩展到具有相对较宽带宽的频率箱的高保真度值。通过结合多阶滤波器设计,我们探索了紧密频率间隔的极限,这在体光学中极难获得。总体而言,我们的模型通用、易于使用且可扩展到其他材料平台,为集成光子学中未来的频率处理器提供了急需的设计工具。
快速发展的现代光通信系统需要小型电光器件,其光学特性需要能够大幅度快速变化。这种纳米级器件可以用作数据存储或片上数据链路的光互连。[1] 在过去的几十年中,基于量子阱结构的电吸收 (EA) 调制器已被提出在高速光网络中发挥特别有前景的作用。[2,3] 利用量子限制斯塔克效应 (QCSE),这些材料的光学特性可以通过沿限制轴的外部电场进行调制,即通过倾斜势阱。由于这种“倾斜”的价带和导带,相关的最低能量电子和空穴波函数将定位在势阱的相对侧,从而导致带隙附近的吸收光谱发生变化。这种场诱导调制的典型特征是波函数之间的重叠积分降低,相关光学跃迁的振荡器强度降低,以及跃迁能量降低,这表现为吸收带边缘红移。[4–6]
摘要:传感器的灵敏度、选择性、可靠性和测量范围是其广泛应用的重要参数。各种检测系统数量的快速增长似乎证明了全世界为增强一个或多个参数而做出的努力是合理的。因此,作为一种可能的解决方案,多域传感方案已被提出。这意味着传感器在光学和电化学等领域同时被询问。光学透明和电化学活性透明导电氧化物(TCO),如氧化铟锡(ITO),为在单个传感器内结合这两个领域提供了机会。这项工作旨在理解 ITO 涂层光纤传感器中观察到的电光调制有损模式共振(LMR)效应。由数值建模支持的实验研究可以识别负责两个领域性能的薄膜特性以及它们之间的相互作用。已发现半导体 ITO 中的载流子密度决定了电化学过程的效率和 LMR 特性。载流子密度会提高电化学活性,但会降低电光调制能力
摘要:传感器的灵敏度、选择性、可靠性和测量范围是其广泛应用的重要参数。各种检测系统数量的快速增长似乎证明了全世界为增强一个或多个参数而做出的努力是合理的。因此,作为一种可能的解决方案,多域传感方案已被提出。这意味着传感器在光学和电化学等领域同时被询问。光学透明和电化学活性透明导电氧化物(TCO),如氧化铟锡(ITO),为在单个传感器内结合这两个领域提供了机会。这项工作旨在理解 ITO 涂层光纤传感器中观察到的电光调制有损模式共振(LMR)效应。由数值建模支持的实验研究可以识别负责两个领域性能的薄膜特性以及它们之间的相互作用。已发现半导体 ITO 中的载流子密度决定了电化学过程的效率和 LMR 特性。载流子密度会提高电化学活性,但会降低电光调制能力