Appalachian(无论客户是否从第三方供应商购买发电)的总电力负荷(跨一个或多个账户或位置)超过 25 兆瓦,并与公用事业公司或其他人签订合同,购买能源、容量和 REC 或仅购买符合条件的可再生能源组合标准(“RPS”)计划要求的 REC。VCEA RPS 计划要求 Dominion 和 Appalachian 每年根据 VCEA 中的目标和每个公用事业公司的总(非核)电力销售量从符合条件的可再生能源发电源采购和淘汰 REC。公用事业公司通过“不可绕过”的附加费从其各自的纳税客户那里收回相关成本以及 VCEA 合规的其他成本。除少数例外,此类费用通常必须由公用事业公司的所有零售电力客户支付,包括从公用事业公司以外的第三方供应商购买电力的客户。
1.1 预计到 2040 年世界能源需求将增加:经合组织和非经合组织国家之间的比较 7 1.2 世界能源趋势 8 1.3 消费群体的一次能源需求 9 1.4 各国发电燃料消耗占比 10 1.5 泰国各类别能源消耗占比 12 1.6 2008-2017 年可再生能源消耗 13 1.7 泰国电力局根据需求计算的每日发电量 21 电力类型 1.8 每日电力负荷 22 1.9 开发负荷 22 1.10 2018-2037 年按发电厂类型划分的新增发电能力 24 2.1 地球表面和大气层的太阳辐射摄入量和排放量 32 2.2 绿色燃料 38 2.3 高效超级红绿炉灶 39 2.4 裂变反应47 2.5 聚变反应 48 3.1 太阳能电池发电 59 3.2 太阳能电池发电系统
在美国努力应对气候危机之际,迫切的脱碳动力与管理短期电力负荷增长的直接挑战形成了鲜明对比。近期《通胀削减法案》(IRA)、《基础设施投资与就业法案》(IIJA)和《芯片与科学法案》等法案旨在激励清洁能源供应链回流,这引发了一些新的负荷需求,其中许多需求需要全天候稳定供电。数据中心的激增也是短期负荷增长的主要驱动力,而人工智能的快速扩张也加剧了它们的负荷需求。从中长期来看,汽车、热泵和一些工业过程等终端用途的电气化程度提高使问题更加复杂。为了利用这些经济发展机会,各州和地区正在寻求创造性的解决方案来应对负荷增长,例如建设电网基础设施和投资加速清洁能源创新的项目。
我国电力供应虽然相对稳定,但电力负荷峰谷电差较大,特别是近年来气候变化引起的用电高峰不断攀升,加剧了电力供需在空间和时间上的不平衡,给电网调峰、生活及工业用电带来严峻挑战[1]。建筑运行用电约占全社会用电的1/4,而热水器用电又占家庭总用电的20%~40%,每年热水器用电量达400~600亿kWh[2,3],参与电网调峰潜力巨大。相变储能材料具有较高的储能密度[4],可有效提高热水器效率,降低运行成本,缓解电力供需不匹配问题。对于四种相变材料——固-液相变材料、液-气相变材料、固-固相变材料和固-气相变材料而言,后三种相变材料的储热密度小、相变过程中体积变化大、压力高等缺点阻碍了这三种相变材料的应用
摘要:本研究调查了燃料电池作为微电网能源系统应用中的储能单元的使用情况,以提高可再生能源的自用率。原型评估由太阳能光伏和燃料电池储能单元组成。该研究利用了以 1 分钟时间分辨率获得的家庭实验天气和电力负荷数据。被评估家庭的日平均能耗为 10.3 kWh,峰值功率输出为 5.4 kW,年能耗为 3757 kWh。所研究的太阳能系统的容量为 3.6 kWp,而燃料电池系统的容量为 0 – 3 kW,可有效与光伏系统集成并最大限度地利用可再生能源。研究表明,通过安装由可再生能源产生的氢气驱动的燃料电池,自用和自给自足能力显着提高。年度能量流表明,2.5 kW 燃料电池的实施将可再生能源利用率从 0.622 提高到 0.918,同时将能源自耗提高 98.4% 至 3338.2 kWh/年,自给率提高 94.41% 至 3218.8 kWh/年。
摘要:本研究使用基于实际输入数据的计算机模拟来检查超级电容器模块作为可再生能源系统中的快速响应储能单元对提高能源自耗和自给自足的影响。评估的系统包括一个容量为 3.0 kWp 的光伏系统和 0 到 5 个超级电容器单元,每个模块的容量为 500 F。这项研究使用 2020 年的电力负荷、太阳辐照度和环境温度的实验数据进行,时间分辨率为 1 分钟。日平均环境温度为 10.7 ◦ C,日平均太阳辐照度为 3.1 kWh/m 2 /天。假设超级电容器只能从使用可再生能源的光伏系统充电,而不能从电网充电。模拟结果表明,使用超级电容器为电力负荷的短暂和大峰值供电可显著提高能源自耗和自给自足。仅使用五个超级电容器模块,年能源自给率就从28.09%提高到40.77%。
1 www.energy-community.org 。 2 2019/944 号电力指令第 2(32) 条(2019 年 6 月 14 日 OJ L 158,第 125 页及以下部分)将“分布式发电”定义为“连接到配电系统的发电装置”。2019/944 号电力指令尚未适用于能源共同体缔约方。 3 2019/944 号指令第 2(20) 条将“需求响应”定义为“最终客户响应市场信号(包括响应随时间变化的电价或激励支付,或响应接受最终客户以有组织的市场中的价格出售需求减少或增加的出价)而改变其正常或当前消费模式的电力负荷变化[...] 无论是单独还是通过聚合”; 《公民权利和政治权利国际公约》第 2(18)条将“聚合”定义为“自然人或法人将多个客户负荷或产生的电力合并起来,在任何电力市场上销售、购买或拍卖的一种功能”。
“下一代”电力公司必须纳入可变的可再生资源,包括风能和太阳能,其数量远远超过传统认为的可能数量。虽然资源变化性是一个挑战,但应该能够通过在地理上分布可再生能源、将它们与不同的可再生能源相结合以及对电力负荷进行更动态的控制来减少和管理这种变化。这项研究表明,将单个太阳能发电站点互连成地理上分散的阵列可以降低电力输出变化,而将太阳能发电站点包括在地理上分散的风力发电站点阵列中可以进一步降低总变化,超过单独使用任何一种资源类型所能达到的范围。具体而言,优化的投资组合平均可将变化性降低 55%,低于所有单个站点的平均水平。最后,据观察,在建模系统中,只需包括互连阵列中潜在站点的一小部分即可实现这些变化性降低。
为了实现 2030 年的目标,我们将继续实施降低运营排放强度的战略,包括在我们的开发项目中优先考虑能源效率和温室气体减排、在我们的运营资产中实施节能措施以及增加可再生电力的消耗。我们采用了电气化,包括位于南旧金山子市场的亚历山大生命科学中心 – 米尔布雷校区的 230 Harriet Tubman Way。我们还利用替代能源,例如我们最近在大波士顿地区开发交付的 325 Binney Street 和 15 Necco Street 的地热能,以及我们西雅图地区亚历山大生命科学中心 – 南湖联盟大型校区的废水热回收。此外,我们继续推进我们的可再生电力战略,最近于 6 月初完成了一个大型太阳能发电场的建设,该发电场目前通过长期购电协议为亚历山大付费账户提供可再生能源,以满足大波士顿地区 100% 的电力负荷。
随着美国致力于解决气候危机的努力,与管理接近任期电力负荷增长的紧迫挑战形成了鲜明的对比。最近在立法中重新新的清洁能源供应链的激励措施,例如《降低通货膨胀法》(IRA),《基础设施投资和就业法案》(IIJA)以及《筹码与科学法》(IIJA)和《筹码与科学法》(CHIPS and Science Act)已促使其中一些新的负载需求,其中许多要求将需要24/7的公司权力。数据中心的增殖也是近期负载增长的主要驱动力,AI的快速扩张正在加剧其负载要求。在长期到长期,最终用途的电气化增加,例如车辆,热泵和某些工业过程,使问题更加复杂。为了利用这些经济发展机会,各州和地区正在寻求创造性的解决方案来应对负载增长,例如建立网格基础设施以及投资加速清洁能源创新的项目。
