硅(Si)由于其高容量而被认为是下一代阳极的有前途的阳极材料。然而,循环过程中大量的膨胀和主动颗粒粉碎会迅速恶化电池性能。SI阳极粒径和粒子粉碎之间的关系以及循环过程中Si颗粒的结构演变尚不清楚。在这项研究中,对未包装和还原的氧化石墨烯(RGO)包裹的SI纳米颗粒(SI@RGO)的形态变化进行了定量的,时间分辨的“ Operando”小角度X射线散射(SAXS)研究。结果提供了SI粒径变化以及非辅助RGO在减轻SI体积膨胀和粉碎中的作用的清晰图片。此外,这项研究证明了与其他方法相比,在电化学环境中“操作”萨克斯的优势。
摘要 - 近年来,环境问题受到了广泛的关注,绿色腐蚀抑制剂的使用已成为大多数研究人员的主要主题。当前的研究重点是评估Ruta Gravolens L.(RG-(EO))的空中油的精油,已用作1 M HCl溶液的低碳钢(MS)上的环保腐蚀抑制剂。表征方法(即气相色谱 - 质谱法(GC/MS))确定了21个代表总量的95.3%的成分,并且已确定为RG-(EO)的主要组成部分。通过测量体重减轻(WL),电力动力学极化(PDP),电化学阻抗光谱光谱谱(EIS)以及量子化学计算方法,测量了RG-(EO)对1 M HCl溶液中MS腐蚀的抑制作用。PDP测试结果表明,随着RG-(EO)的添加,MS抑制的有效性增加,在2.00 g/L时达到了近94.80%。热力学分析表明,抑制效率随培养基温度(308-343 K)的升高而略有增加。此外,热力学动力学参数表明,在MS表面位点上的RG-(EO)吸附受Langmuir吸附等温线的影响。最后,基于量子化学的理论研究
摘要:尽管执行了最佳药物治疗(OMT),但晚期心力衰竭(ZS)的特征是耐火症状和频繁再住院。 div>由于患有心血管疾病的危险因素和人口衰老的患者数量增加,末端ZS的div>越来越大,这是卫生保健系统的巨大临床挑战和负担。 div>预测是一种不良疾病,其死亡率为25%至75%。 div>鉴于OMT是一种有限的效果,在治疗此类患者时,考虑了涉及心脏移植和机械循环支持的先进治疗方法。 div>心脏移植是末端ZS的黄金标准,但是由于供体器官数量有限,并且存在某些禁忌症,因此将无法使用这种方法对患者进行治疗。 div>短期机械循环装置可用于治疗心源性休克和急性加剧,以恢复决策,恢复,孔孔或心脏移植的升级,恢复,升级。 div>长期左心室支撑装置被安装为倒带到心脏移植或作为永久意识到心脏移植的患者的目的地治疗。 div>充分使用心脏移植的主要挑战是捐助者的需求和外观之间的不成比例,这需要候选人的最佳排练以及资源的更好合理化。 div>对于成功的结果至关重要。 div>为时已晚,无法将这些患者转到移植中心进一步限制治疗选择。 div>尽管机械循环支持设备的技术取得了进步,但它们的全部潜力仍然有限,对右心室,欠发达的完整体内系统,平民或可及性以及安装后可能不需要的事件的足够长期支撑,例如通道,长号,长号,长号或出血。 div>在这项检查中,对终末Z患者的治疗挑战进行了综述,对疾病本身,药物治疗和使用晚期治疗方法的使用。 div>
摘要:在本文中,我们研究了由PEDOT:PSS/石墨烯组成的复合材料的潜在应用,该复合材料通过喷雾涂层沉积在柔性底物上,作为一种自动导电膜,用于在可穿戴生物传感器设备中应用。PEDOT:PSS/石墨烯的稳定性通过电化学障碍光谱(EIS),环状伏安法(CV)和线性极化(LP)进行评估,而在人造汗液电解质中暴露于人造汗液中,而扫描电子显微镜(SEM)则用于调查以下这些层中的文学变化。结果表明,层在-0.3至0.7 V相比Ag/agCl的电势范围内表现出主要的电容性行为,截止频率约为1 kHz,在500个周期后保持90%的容量。在暴露于空气中的衰老6个月仅导致阻抗的略有增加,这表明在不需要的条件下存储潜力。然而,对人造汗液的长时间暴露(> 48 h)会导致明显的降解,从而导致阻抗增加超过1个数量级。观察到的降解引发了这些层在可穿戴生物传感器应用中的长期生存能力的重要考虑因素,从而促使在长时间使用过程中需要采取其他保护措施。这些发现有助于持续的努力,以增强医疗保健和生物技术应用中生物传感器的稳定性和可靠性。
响应对可持续石墨烯合成方法不断增长的需求,传统上以恶劣的条件和延长的处理为特征,我们提出了一种创新的方法。在这里,在温和的血浆条件下,石墨烯是利用自然资源的Melaleuca Alternifolia合成的。此方法不仅与对环保过程的需求越来越多,而且具有效率,在几秒钟内产生石墨烯。我们的研究采用了各种分析技术,包括拉曼光谱副本,证实了石墨烯的成功合成。光谱分析中鉴定出的独特峰验证了产生的石墨烯材料的高质量。除了合成之外,我们的研究还深入研究了合成石墨烯的电化学特性。对实际生物分子进行严格的测试揭示了增强的电流峰,强调了石墨烯在电化学感测范围中的潜在应用。这项工作有助于推进可持续和有效的石墨烯合成,同时探索其实用应用的有希望的特性。
锂离子电池在循环过程中改变其几何尺寸,这是一系列显微镜机制的宏观结果,包括但不限于扩散诱导的膨胀/收缩/收缩,气体进化,固体电解质相间相间相位相和颗粒的裂纹。通过数学模型预测非线性维度变化对于电池的终身预测,健康管理和非破坏性评估至关重要。在这项研究中,我们提出了一种将粉末材料弹性模型实施到多孔电极理论(PET)中的方法。通过将总体变形分解为弹性,塑料和扩散引起的部分,并使用粉末可塑性模型来描述塑料部分,该模型可以捕获由液体(DE-)插入引起的可逆厚度变化,以及由于重新安排和颗粒的稳定而导致的不可逆厚度变化。对于预测电池健康和安全性的现实世界应用,关键在于迅速解决数学方程。在这里,我们将耦合模型实施到开源软件PETLION中,以进行毫秒尺度模拟。使用从文献中收集的值,在不同条件下测试的值,与现实世界观测值相比,对计算模型进行参数化,并定性分析以发现参数输出关系。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad4f1e]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
二维(2D)材料中的摘要研究兴趣由于其独特而引人入胜的特性而导致了指数增长。高度裸露的晶格平面以及2D材料的可调电子状态在设计新平台上为能量转换和传感应用的新平台创造了流动机会。仍然,理解这些材料的电化学(EC)特征的挑战是源于固有和外在异质性的复杂性,这些异质性可能会掩盖结构 - 活性相关性。扫描EC探针显微镜调查在揭示纳米级级别的局部EC重新激素方面提供了独特的好处,而纳米级级别则无法使用宏观方法。本综述总结了应用扫描EC显微镜(SECM)和扫描EC细胞显微镜(SECCM)的最新进展,以获得对2D电极基本面的独特见解。我们展示了EC显微镜在解决缺陷,厚度,环境,应变,相位,堆叠和许多其他方面的功能,以及代表性2D材料及其衍生物及其衍生物的光电化学。对扫描EC探针显微镜调查的优势,挑战和未来机会的观点进行了讨论。
本文实现了一种高效算法,用于从基于物理的电池模型(例如 P2D 模型)中提取电化学阻抗谱 (EIS)。该数学方法与 EIS 的实验方法不同。在实验中,电压(电流)在很宽的频率范围内受到谐波扰动,并测量相应电流(电压)的幅度和相移。该实验方法可以在仿真软件中实现,但计算成本很高。此处的方法是从完整物理模型中确定局部线性状态空间模型。作为状态空间模型基础的四个雅可比矩阵可以通过对物理模型进行数值微分而得出。然后使用计算效率高的矩阵操作技术从状态空间模型中提取 EIS。该算法可以在瞬态过程中的某一时刻评估完整的 EIS,而与电池是否处于静止状态无关。该方法还能够分离全电池阻抗以评估部分 EIS,例如仅评估电池阳极。尽管这种部分 EIS 很难通过实验测量,但部分 EIS 为解释全电池 EIS 提供了宝贵的见解。© 2024 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,只要正确引用原始作品。[DOI:10.1149/1945-7111/ad4399]
摘要:界面结构和化学演变是电池和其他电化学系统安全性、能量密度和寿命的基础。在锂电沉积过程中,可能会出现局部非平衡条件,从而促进异质锂形态的形成,但直接研究这些条件具有挑战性,尤其是在纳米尺度上。在这里,我们绘制了锂电沉积过程中活性铜/电解质界面的化学微环境,并展示了一种新方法——原位冷冻低温电子显微镜 (cryo-EM),用于锁定纽扣电池中出现的结构。我们发现局部离子耗竭与锂晶须有关,但与平面锂无关,我们假设耗竭源于根部生长的晶须在生长界面消耗离子,同时限制离子通过局部电解质的传输。这可能导致危险的锂形态传播,即使在浓电解质中也是如此,因为离子耗竭有利于树枝状晶体的生长。因此,原位冷冻冷冻电镜可以揭示活性电化学界面处的局部微环境,从而能够直接研究能源设备运行过程中出现的特定地点的非平衡条件。
记录的版本:此预印本的一个版本于2024年4月20日在离子学上发布。请参阅https://doi.org/10.1007/s11581-024-05537-x。