摘要 — 二维 (2D) 半导体晶体可用于进一步提高场效应晶体管的效率和速度。此类晶体管不受传统 MOS 晶体管在尺寸减小时产生的一些不利影响。本研究提出了以二维晶体为沟道的晶体管 MOS 结构模型,并研究了其电荷特性。在 MoSe 2 、WS 2 、WSe 2 、ZrSe 2 、HfSe 2 和 PtTe 2 等代表性二维晶体的电物理特性变化范围内对这些特性进行了数值模拟。发现了结构电物理参数通过化学势的自洽相关性,并证明了场电极电位和栅极绝缘体电容对它们的影响。对该晶体管结构的传输特性陡度与电压增益的计算表明,对于禁带宽度在0.25–2.1 eV范围内的过渡金属二硫属化合物(TMD)沟道,上述参数的幅度分别可达0.1 mA/V和1000。
This paper presents the application of two swarm intelligence techniques, multi-objective artificial bee colony (MOABC) and multi-objective particle swarm optimization (MOPSO), to the optimal design of a complementary metal oxide semiconductor (CMOS) low noise amplifier (LNA) cascode with inductive source degeneration.目的是在电压增益和噪声数字之间实现平衡的权衡。优化的LNA电路在2.4 GHz的运行量为1.8 V电源,并在180 nm CMOS过程中实现。在MATLAB中实现了两种优化算法,并使用ZDT1,ZDT2和ZDT3测试功能进行了评估。然后使用Advance Design System(ADS)模拟器模拟了优化的设计。结果表明,MOABC和MOPSO技术在优化LNA设计方面是实用有效的,从而比以前发表的作品更好地性能,增益为21.2 dB,噪声图为0.848 dB。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
设计理想的模拟电路由于非常大的集成而变得困难。互补的金属氧化物半导体(CMOS)模拟整合电路(IC)可以使用进化方法来找出每个设备的尺寸。使用高级纳米晶体管晶体管技术(180 nm)设计了CMOS操作性转导放大器(CMOS OTA)和CMOS电流传送带第二代(CMOS CCII)。CMOS OTA和CMOS CCII都具有较高的性能,例如广泛的频率,电压增益,发动速率和相位边缘,以在信号处理中包括非常广泛的应用,例如活动过滤器和振荡器。优化方法是一种迭代过程,它使用优化算法来更改设计变量,直到确定最佳解决方案为止。在这项研究中,采用了不同种类的算法遗传算法(GA),粒子群优化(PSO)和杜鹃搜索(CS)来增强和增强性能参数。减少开发常规操作放大器的安装时间所需的时间。一些研究降低了在各种频率下使用的功率的值。其他人以极高的频率运行,但其功耗大于以较低频率运行的功耗。
摘要 本文提出了一种非隔离式高升压三端口转换器,该转换器提供从每个输入源到输出负载的两个独立功率流路径。为了减少转换器元件的数量,一些元件扮演多种角色。因此,储能装置使用与向负载传输电力相同的元件进行充电。在该转换器中,采用耦合电感技术来增加电压增益,减轻漏感效应并提供软开关条件;采用两个有源钳位电路。由于开关两端的电压被钳位,因此可以使用电压应力低、导通损耗低的开关。 关键词:三端口转换器、多输入转换器、DC-DC 转换器、高升压、软开关、混合电力系统。 介绍 如今,能源发电源的多样性以及在一个系统中同时使用几种能源使得混合能源系统变得更具吸引力。混合能源系统利用电力电子应用中不同能源的不同特性,例如与单一能源系统相比,集成度、可靠性、耐用性、功率处理能力和效率的提高。
摘要—本文报告了通过与后端工艺 (BEOL) 兼容的原子层沉积 (ALD) 工艺在鳍片结构和集成电路上涂覆 In 2 O 3 3-D 晶体管的实验演示。通过沟道厚度工程和后沉积退火,实现了具有 113 cm 2 /V · s 高迁移率和 2.5 mA/µ m 高最大漏极电流 (ID) 的高性能平面背栅 In 2 O 3 晶体管。演示了基于 ALD In 2 O 3 的高性能零 V GS 负载反相器,其最大电压增益为 38 V/V,最小电源电压 (V DD ) 低至 0.5 V。还演示了通过栅极绝缘体和沟道半导体的低温 ALD 制备的顶栅氧化铟 (In 2 O 3 ) 晶体管,其 ID 为 570 µ A/µ m,亚阈值斜率 (SS) 低至 84.6 mV/decade。然后演示了具有顶栅结构的 ALD In 2 O 3 3-D Fin 晶体管,其受益于 ALD 的保形沉积能力。这些结果表明,ALD 氧化物半导体和器件具有独特的优势,并且有望实现用于 3-D 集成电路的 BEOL 兼容单片 3-D 集成。
电子和通信等各个领域对高性能折叠共源共栅 CMOS OTA 的需求日益增长,要求它们具有宽带宽、高电压增益、紧凑设备和低功耗的特点。最近的研究表明,实施水循环算法 (WCA) 可以大大提高折叠共源共栅 CMOS 运算跨导放大器 (OTA) 的性能。这是因为 WCA 能够有效地执行全局搜索和局部探索。值得注意的是,所讨论的 OTA 采用 0.18µm TSMC 技术构建,工作电压为 ±1.8V。模拟结果是使用 PSPICE 软件 (版本 17.4) 收集的。这些设计解决方案表现出卓越的效率,可提供显着的放大、高频率和最低功耗。此外,本文还利用水循环算法演示了折叠共源共栅 CMOS 运算跨导放大器的实现和仿真结果,为此使用了 MATLAB。在折叠共源共栅 CMOS OTA 的 OTA 设计中使用 WCA 可显著提高性能指标。与无算法设计相比,电压增益显著增加,增益带宽增加了五倍。此外,与非 WCA 折叠共源共栅 CMOS OTA 设计相比,功耗降低了 15.5%,共模抑制比提高了 15.18%。结果突出了 WCA 技术作为一种强大的优化策略的有效性,可以提高折叠共源共栅 CMOS OTA 的性能。
摘要:本文利用ATLAS TCAD器件模拟器从模拟、RF性能的角度探讨了环绕栅极无结渐变通道 (SJLGC) MOSFET 的潜在优势。系统地研究了横向渐变通道对电位、电场、载流子速度、通道能带的影响。本研究主要强调了 SJLGC MOSFET 的优越性能,表现出更高的漏极电流 (ID )、跨导 (gm )、截止频率 (f T )、最大振荡频率 (f max )、临界频率 (f K )。由于通道渐变的影响,SJLGC MOSFET 的漏极电流提高了 10.03%。SJLGC MOSFET 的 f T、f max 和 f K 分别提高了 45%、29% 和 18%,表现出更好的 RF 性能。 SJLGC MOSFET 相对于 SJL MOSFET 的优势进一步得到阐明,其固有电压增益 (gm / g ds ) 提高了 74%,表明其在亚阈值区域具有更好的应用。但在亚阈值区域,SJLGC MOSFET 的跨导产生因子小于 SJL MOSFET。由于较低的栅极间电容 (C GG ) 的影响,SJLGC MOSFET 的固有栅极延迟 (ζ D ) 与 SJL MOSFET 相比较小,表明其数字开关应用更好。模拟结果表明,SJLGC MOSFET 可以成为下一代 RF 电路的有力竞争者,该电路涵盖了 RF 频谱中的广泛工作频率。
在过去十年中,石墨烯因其独特的电气特性(如高电子迁移率和高饱和速度 [1])而备受关注。遗憾的是,由于没有带隙,石墨烯不适合数字电路应用。在模拟 RF 电路中,传统的 MOSFET 结构(如石墨烯场效应晶体管 (GFET))能够达到约 400 GHz 的截止频率 (f T ) [2],但输出特性的非饱和行为 [3] 导致重要 RF 性能指标的下降,因为固有电压增益 A V = g m / g ds 。出于这个原因,最近提出了新的基于石墨烯的晶体管概念,如石墨烯基晶体管 (GBT, [4]),利用通过薄电介质的量子隧穿,如热电子晶体管 (HET, [5])。GBT 由垂直结构组成(图1 中的插图),其中石墨烯片用作控制电极,即基极 (B),位于图1 中的 x = 0 处。基极通过发射极-基极和基极-集电极绝缘体(分别为 EBI 和 BCI)与金属或半导体发射极 (E) 和金属集电极 (C) 隔开 [4]。在正常运行中(即正基极-发射极偏压,V BE > 0 和正集电极-基极偏压,V CB > 0),电子隧穿 EBI,垂直于石墨烯片 (GR) 穿过基极,然后沿着图1 中的 x 方向漂移穿过 BCI 的导带 (CB)。尽管其单原子厚度,
摘要为DC-DC转换器设计了新的电路拓扑。提议的转换器采用单个功率开关,该电源开关将传统的增强与光伏(PV)面板的单端主电感器转换器(SEPIC)集成在一起。从9 V DC输入中开发并实现了105 V DC输出的原型。使用理论和实际验证验证了所提出的拓扑的性能。结果表明,较高的电压增长率为11.67,低占空比为0.82,并且在大约54 V的组件上降低了电压应力。该电路可用于PV面板和其他需要DC-DC电压加速转换率的可再生能源。关键字:DC-DC加速转换器,光伏(PV)面板,电压增益,占空比和电压应力。引言可以通过从化石燃料转换为可再生能源资源来实现碳中性社会(Isah等人,2019年)。这种能源转型能够增强经济,给灾难带来韧性,并帮助农村社区对环境的损害较少,以获取电力(Isah等,2020)。太阳能是自然可用,干净,廉价的能源之一,需要使用光伏(PV)进行发电(Gopi and Sreejith,2018; Engin和Engin andçak,2016)。PV面板以机电能量形式利用太阳,并通过使用太阳能电池将其转化为电能(Oulad-Abbou等,2019; Ahmad等,2019; Jiang等,2016)。天气条件和安装区域是影响PV板性能的一些重要因素(Kuo等,2015)。发电系统可以用于网格连接或微电网连接(Kuo等,2015;Öztürk等,2018)。通常,网格连接需要实用程序变电站。出于这个原因,建造太阳能农田需要许多光伏面板,而太阳能农田又占据了一个用于农业实践和其他目的的广泛领域,