此参考设计显示了单端主电感转换器(SEPIC)转换器的降压功能的使用。由于输入和输出由电容器分开,因此该拓扑可用于为电池充电带有可变V的电池以及可变V OUT。使用同步峰值电流模式控制器LM5122;该IC可以通过级别移动(RCD网络)驱动高侧同步FET。通过将9-V至36-V输入施加,该板可用于为两个电压范围为8 V至28 V,最大2-A充电电流或简单用作标准的恒定电压电源。输出电压和电流的两个设定点都是通过两个修剪器定义的,即使两个参考文献也可以通过使用两个数字到Analog转换器来代替。
开路电压 (OCV):当电流为零且内部电池状态处于平衡状态时,电池的 OCV 存在。对于基于 LiMO2 阴极的电池化学成分,OCV 可以与电池充电状态 SOC(100 x 可用容量/总容量)相关联。阴极化学成分是影响曲线形状、电压范围和温度依赖性的主要因素。磷酸铁阴极材料与 SOC 相比具有“平坦”的 OCV 曲线,类似于镍镉和镍氢电池类型。LiMO2 阴极电池的标称电压通常为 3.6-3.7V。该电压对应于 50% 的 SOC。标称电压乘以电池容量通常是电池能量的良好估计。这些电池的 OCV 通常在 3V(0% SOC)至 4.2V(100% SOC)之间。氧化钴基电池的最大电压可能高达 4.35V。
Matthias,DD1US,2024 年 4 月 4 日,修订版 1.0 前段时间,我买了一个有缺陷的 13cm 功率放大器,最初由 Phillip Prinz DL2AM 出售。PCB 上有一个标记 MT2,3Z1W,似乎是型号。两级放大器安装在镀锡机柜中。PCB 看起来像 RT-Duroid,它正确地连接到固体金属散热器上。电源电压范围为 12-15V,放大器具有定向耦合器和二极管检测器,用于测量正向输出功率。放大器坏了,在检查过程中我发现第一级的驱动放大器有缺陷。我用 Mini Circuits VNA25+ 替换了它。第二级使用的是三菱 MGF0904 GaAsFET。更换有缺陷的部件后,PA 现在又正常工作了。以下是该设备的一些图片:
摘要:不一致是触发电池组安全问题的关键因素。对退休电池的不一致评估对于确保在随后的逐渐使用过程中的安全和稳定的操作具有重要意义。本文总结了用于电池不一致评估的常用诊断方法。选择基于现实世界中车辆的单个电压数据,选择了局部离群因子(LOF)算法和改进的香农熵(IME)算法。然后,基于LOF,IMEN和细胞电压范围的三个参数,建立了许多级别和指标的退休电池的全面不一致评估策略。最后,使用两个现实的电池样本对评估策略进行了验证。结果表明,所提出的方法可以快速有效地实现退休电池的不一致评估。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
Product Specifications EDU sized for 3 crew, 6 mT hardware, 5 yrs U.S. SI Performance Air Flow Rate 10-15 CFM CO 2 Scrubbing Capacity ~6 kg/day @ 13 CFM and 5,000 ppm CO 2 input Bed Heater Operation, Maximum Temperature 450 °F 230 °C Mechanical Mass 410 lbm 186 kg Volume 12 ft 3 0.35 m 3 Electrical Steady State Power (Nominal) 530 Watts @ 28 VDC电压范围22-32 VDC环境振动12 GRMS外部工作温度范围40至120°F 4至49°C注意:此数据仅用于信息,并且可能会更改。联系Sierra空间以获取设计数据。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
开路电压(OCV):当电流流量为零并且内部细胞状态处于平衡状态时,则存在单元格的OCV。对于基于二氧化硅阴性的细胞化学,OCV可以与Cell-Chine of-CANE SOC(100 X可用容量/总容量)相关。阴极化学是影响曲线,电压范围和温度依赖性形状的主要因素。磷酸铁阴极材料的OCV曲线与SOC相比,类似于镍 - 卡德蒙和镍金属氢化物细胞类型。Limo2阴极细胞的标称电压通常为3.6-3.7V。该电压对应于50%的SOC。标称电压时间通常是对细胞能量的良好估计。这些细胞的OCV通常范围从3V(0%SOC)到4.2V(100%SOC)。氧化钴基细胞的最大电压最大为4.35V。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
