b'composites,[14 \ xe2 \ x80 \ x9316]聚合物粘合剂,[17 \ xe2 \ x80 \ x9319]和添加剂[19,20],以改善Li-Cells中的Si-Electrode性能。涉及硅阳极中的金属碳化物是尚未探讨增加容量和循环寿命的另一种策略。首先,据报道,具有特定微观结构的复合硅/wolfram碳化物@石墨烯可维持较高的初始库仑效率和长期循环寿命,从而减轻了结构变化。[21]相反,金属碳化物(mo 2 C,Cr 2 C 3等)以Si Cr 3 C 2的形式 @几层石墨烯和Si Mo 2 C @几层石墨烯电极的据报道,具有良好的电化学性能。[22]此外,碳化物通常还可以提供出色的导电骨架,以提高Si的电子电导率,这要归功于纳米导电通道的存在,从而降低了电子转移电阻。[23,24]'
活跃的代谢对肿瘤的生长至关重要。线粒体是真核生物大多数细胞中的关键细胞器,功能正常的线粒体是癌细胞存活的必要条件。它们通常被称为细胞的“能量生产工厂”,尽管近几十年来人们越来越认识到它们在组织大分子合成和细胞信号传导方面的重要作用。现在人们了解到,这三种线粒体功能都在癌细胞的存活和繁殖中发挥作用。三种代谢途径在人体细胞中产生能量,即氧化磷酸化 (OXPHOS)、糖酵解和脂肪氧化。这三种途径在癌细胞中通常失调,是治疗的潜在靶点,但在本综述中我们将重点介绍 OXPHOS 途径。OXPHOS 代谢途径在驱动肿瘤细胞增殖方面具有两个关键功能。它以 ATP 的形式提供生物能量需求,并将葡萄糖中的碳输送到大分子合成中,充当分解代谢和合成代谢的枢纽。线粒体基质中的三羧酸循环 (TCA) 酶和电子传递链 (ETC) 的跨膜蛋白复合物是此过程的核心。将碳燃料送入 TCA 循环会产生电子供体 NADH 和 FADH 2,它们为 ETC 复合物 I 至 IV 提供电子。当电子沿着这些复合物传递时,质子被复合物 I、III 和 IV 泵入膜间隙。这种质子动力的产生以及随后质子流回
摘要。在这项研究中,使用了密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)方法,研究了硫代齐奈德富勒烯C 60纳米复合物的物理和化学特性。最重要的目标是增加C 60偶极力矩作为一种新型药物输送系统,以携带硫代齐奈德。在基态下使用了几个描述符,包括基于HOMO和LUMO轨道能,硬度,柔软度,化学势和Mulliken电荷的电化学性质。该纳米复合物的偶极矩约为2.61d,这表明其在极溶剂中中度溶解度。使用CAMB3LYP方法获得的UV-VIS频谱表明,在复合物形成后,吸收光谱的蓝移度约为= 24 nm。基于激发态的计算和第一个模式中的孔 - 电子理论,在复合物的不同吸收波长处观察到光诱导的电子传递(PET)现象。使用电子传递的Marcus理论,计算电子转移的激活的自由能和所有宠物的电子转移的自由能。
