卫星和其他航天器中使用的电子器件暴露在宇宙辐射中。为了确保这些器件的可靠性,应仔细研究辐射的影响。评估电子设备辐射可靠性的主要方法是测量其单粒子效应 (SEE) 截面与离子束电离功率的关系。之前已经发表了许多关于太空应用的 SEE 结果 [1-4]。本文讨论的研究旨在确定电子设备对单粒子闩锁 (SEL) 和单粒子翻转 (SEU) 的灵敏度。对十种不同类型的 CMOS 器件进行了 SEE 测量,包括 ADC、DAC、模拟开关、MOSFET 驱动器、数字合成器、延迟缓冲器和晶体振荡器。
卫星和其他航天器中使用的电子器件暴露在宇宙辐射中。为了确保这些器件的可靠性,应仔细研究辐射的影响。评估电子设备辐射可靠性的主要方法是测量其单粒子效应 (SEE) 截面与离子束电离功率的关系。之前已经发表了许多关于太空应用的 SEE 结果 [1-4]。本文讨论的研究旨在确定电子设备对单粒子闩锁 (SEL) 和单粒子翻转 (SEU) 的灵敏度。对十种不同类型的 CMOS 器件进行了 SEE 测量,包括 ADC、DAC、模拟开关、MOSFET 驱动器、数字合成器、延迟缓冲器和晶体振荡器。
电力电子器件和模块的寿命建模有着悠久的研究历史。两大主要研究方向是数据驱动方法和基于模型的方法。数据驱动方法使用机器学习从经验数据中训练寿命模型。它是一种纯数据挖掘技术,不考虑故障机制。相比之下,基于模型的方法旨在研究故障机制,以便在考虑故障机制的情况下建立寿命模型。虽然数据驱动方法如今由于新一波人工智能的兴起而变得越来越流行,但基于模型的方法一直是经典方法并不断发展。我们的工作属于基于模型的方法。下面,我们将简要回顾主要的基于模型的方法。
Quantum Motion 是一家总部位于伦敦的快速发展的量子计算初创公司,该公司正在招募一位经验丰富的量子工程师加入 Quantum Hardware 团队,为基于硅技术的可扩展量子计算机的开发做出贡献。该职位将涉及开发和演示可扩展的硅自旋量子比特相干控制策略,以实现跨阵列的量子逻辑运算。在固态系统中动态表征和控制自旋方面的经验至关重要。不需要硅基纳米电子器件方面的经验,但最好熟悉硅量子电子学概念。
量子电子器件,例如量子点接触 (QPC) 和量子点,因具有电自旋控制的潜力而引起了人们对自旋电子学和量子信息处理应用的极大研究兴趣 1–6。这些器件可能构成未来量子电路的构建块,例如基于大量相同量子点使用 QPC 作为电荷传感器的量子比特阵列。为了实现大规模可制造性,首先必须建立可重复性,使得集成电路中的每个组件具有相同的工作参数。传统上,调制掺杂结构已用于量子电子器件,因为其易于制造。然而,随机分布的电离供体的背景静电势大大降低了可重复性 7,8。这种内在的可变性可以通过利用完全未掺杂的结构来避免,通过对金属顶栅施加适当的偏置将电荷载流子限制在异质界面处 9-12 。这些结构有许多优点,包括提高迁移率 13 、提高热循环特性 14 ,以及我们将在这里展示的量子传输特性的优越性。量子点接触是连接两个二维储层的窄一维通道,是最简单的栅极定义量子装置类型,使其成为研究可重复性 7,15,16 的理想选择。我们首先问一个问题:如果在同一晶圆上制造几个相同的装置,它们会表现出相同的行为吗?为了研究这个问题,我们在调制掺杂和未掺杂的晶圆上制造了 18 个名义上相同的 QPC,并观察定义和夹断一维通道所需的栅极偏置。我们还研究了 QPC 通道内电导量子化和静电势的均匀性,以及热循环下的可重复性。为了进行比较,我们还研究了空穴 QPC 中的可重复性。基于 III-V 半导体系统的空穴量子器件最近引起了广泛关注,因为它们
摘要:本文介绍了一种采用 130 nm SiGe BiCMOS 技术设计的小面积单片像素探测器 ASIC,用于升级 CERN 的 FASER 实验的预流探测器。该原型的目的是研究快速前端电子器件在像素敏感区域内的集成,并确定能够最好地满足实验规格的配置。为了应对与像素内前置放大器和鉴别器集成相关的若干挑战,自感噪声、不稳定性和串扰被最小化。还将描述用于特性描述和设计选择的方法。这里研究的两种变体将在 FASER 实验预流的预生产 ASIC 中实施,以进行进一步测试。
摘要:微电子计算机在满足当今所有信息处理需求方面遇到了挑战。满足这些需求将需要开发采用替代处理模型和新设备物理的非传统计算机。神经网络模型已成为现代机器学习算法的主导,并且已经开发出专门的电子硬件来更有效地实现它们。硅光子集成行业有望将通常为微电子保留的制造生态系统带入光子学。光子器件已经找到了简单的模拟信号处理利基,其中电子器件无法提供足够的带宽和可重构性。为了解决更复杂的信息处理问题,它们必须采用
在本研究中,我们通过测量逆自旋霍尔效应,用实验证明了传播的 SPP 诱导自旋电流,首次证明了传播的 SPP 和自旋电流之间的相互转换性。为了确认 SPP 诱导自旋电流的存在,需要消除由激光引入局部加热引起的其他寄生效应,比如自旋量热器产生的自旋电流。这通过三项测量实现了;(i) 逆自旋霍尔效应的反向对准,(ii) s 和 p 极化引入,以及 (iii) 逆自旋霍尔效应的入射角依赖性。所展示的结果可用于开发基于 SPP 的光自旋电子耦合器,作为自旋电子器件和光学数据传输或存储之间的接口。
主动控制固态系统中的自旋自由度是自旋电子学的最终目标。高效自旋电子器件设计中的一个基本量是自旋弛豫寿命。该参数是电子自旋进动(Dyakonov-Perel 机制)和自旋翻转(Elliot-Yafet)动力学的描述符。该项目的目的是开发计算工具,从第一原理模拟这些自旋弛豫机制。计算将基于密度泛函理论,结合更先进的多体方法,以解释杂质和声子对电子的散射。鉴于自旋弛豫事件是相对论自旋轨道相互作用的结果,拓扑和二维材料自然而然地成为有前途的研究对象。