摘要。LUXE 实验(LASER Und XFEL 实验)是 DESY Hamburg 正在规划的一项新实验,它将研究强场前沿的量子电动力学 (QED)。在这种状态下,QED 是非微扰的。这表现在从 QED 真空中创建物理电子-正电子对。LUXE 打算通过使用硅跟踪探测器等来测量这种前所未有的状态下的正电子产生率。大量预期的正电子穿过敏感的探测器层会导致极具挑战性的组合问题,这对于经典计算机来说在计算上会变得非常困难。本文提出了一项初步研究,以探索量子计算机解决此问题的潜力以及从探测器能量沉积中重建正电子轨迹。重建问题以二次无约束二进制优化的形式提出。最后,讨论了量子模拟的结果,并将其与传统的经典轨迹重建算法进行了比较。
过去二十年,科学界不断努力寻求更好的量子资源协方差框架,重点主要放在量子纠缠上。在这项工作中,我们通过分析洛伦兹增强下真正的多体纠缠和量子相干性的行为,将讨论向前推进了一步。具体来说,我们对叠加多体纯态中产生的电子-正电子对问题进行了案例研究。我们的方法与标准处理的不同之处还在于,我们考虑了四动量的所有成分,从而允许检查在这些自由度之间也可以编码纠缠的场景。我们的分析揭示了这个问题中有趣的微妙之处,比如实验室框架中的真正 4 体纠缠在洛伦兹增强框架的视角下转变为真正的 8 体纠缠加上量子相干性。此外,这些量子资源的给定组合被证明会形成洛伦兹不变量。尽管我们的研究结果无法通过第一原理确定信息论洛伦兹不变量,但它们为沿着这条路线进行根本性突破铺平了道路。
b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
美国国家标准与技术研究所正在研究一种原型低温热传递标准 (CTTS),作为低信号电平下的潜在交流-直流传递标准 [1, 2]。最近,我们用 HTS 传输线改造了低温标准,以提高其性能。电子低温设备的一个常见问题是将直流和交流信号从室温参考平面传送到低温设备。这对于 errs 来说尤其令人担忧,因为校准的仪器必须处于室温下。由于大多数金属和合金的电导率和热导率成正比,因此在试图实现低电阻和低热导率时会出现困境。对于超导体,由于消除了电子对该值的贡献,临界温度 (Tc) 以下的热导率可能会急剧下降。就超导状态下的电性能而言,直流电阻降至零,载流能力高,交流传输特性在感兴趣的频率范围内足够。我们实施了由高质量结晶薄膜 YBa2Cu)Ox (YBCO) 制成的共面传输线。YBCO 的临界温度接近 90 K,因此在 77 K 时它已进入超导状态。我们使用此线在低温恒温器的 77 K 和 4 K 级之间传输电信号。
了解胺与金纳米粒子表面之间的相互作用非常重要,因为它们在稳定纳米系统、形成蛋白质冠层以及制备半合成纳米酶方面发挥着重要作用。通过使用荧光光谱、电化学、X 射线光电子能谱、高分辨率透射电子显微镜和分子模拟,可以详细了解这些相互作用。本文表明,胺与纳米粒子表面 Au(0) 原子相互作用,其孤电子对的强度与校正空间位阻后的碱度呈线性相关。结合动力学取决于金原子的位置(平面或边缘),而结合模式涉及单个 Au(0) 和位于其上方的氮。一小部分仍然存在的表面 Au(I) 原子被胺还原,产生更强的 Au(0)-RN。 +(RN . ,失去一个质子后)相互作用。在这种情况下,结合模式涉及两个 Au(0) 原子,它们之间有一个桥接氮。当蛋白质参与(至少部分参与)金离子的还原时,可以更好地获得稳定的金纳米粒子,就像稳健的半合成纳米酶制备所需的那样。
L07 Chem 105 普通化学原理 I 本课程追溯了化学的发展,从早期的原子理论到现代的结构、键合和分子间相互作用的描述。在整个学期中,学生将学习如何从宏观的化学计量学观察、化学反应、元素和化合物的性质以及化学周期性发展到微观的分子结构和键合理解。本学期从与化学计量学、化学反应、溶液化学和气体性质相关的基础知识开始,重点是定量问题解决。然后介绍八位字节规则、路易斯结构和价壳电子对排斥 (VSEPR) 理论作为描述分子稳定性和结构的早期尝试。接下来介绍局部电子模型 (LEM) 和分子轨道理论 (MOT) 作为化学键的现代描述。本课程以分子间力(如氢键和范德华相互作用)结束。本课程是一系列严肃的入门课程,要求并培养代数计算和解决问题的技能。先决条件:一年高中化学或物理,或经教师许可。学分 3 个单位。A&S IQ:NSM、AN 建筑:ETH、S、NSM 艺术:NSM BU:SCI
注释: 1. 本文档中包含的所有信息截至发布之日均为最新信息。但是,此类信息如有更改,恕不另行通知。在购买或使用此处列出的任何瑞萨电子产品之前,请与瑞萨电子销售办事处确认最新产品信息。此外,请定期仔细关注瑞萨电子将披露的其他信息和不同信息,例如通过我们的网站披露的信息。 2. 对于因使用本文档中描述的瑞萨电子产品或技术信息而导致的或由此引起的第三方专利、版权或其他知识产权的侵权,瑞萨电子不承担任何责任。在此不授予瑞萨电子或其他方的任何专利、版权或其他知识产权的明示、暗示或其他形式的许可。 3. 您不得更改、修改、复制或以其他方式盗用任何瑞萨电子产品,无论是全部还是部分。 4. 本文档中提供的电路、软件和其他相关信息的描述仅用于说明半导体产品的操作和应用示例。您完全有责任将这些电路、软件和信息纳入您的设备设计中。瑞萨电子对您或第三方因使用这些电路而遭受的任何损失不承担任何责任。
1. 本文档中提供的电路、软件和其他相关信息的描述仅用于说明半导体产品和应用示例的操作。您对在产品或系统设计中整合或以其他方式使用电路、软件和信息负全部责任。瑞萨电子对于您或第三方因使用这些电路、软件或信息而遭受的任何损失和损害不承担任何责任。 2. 瑞萨电子在此明确声明,对于因使用本文档中描述的瑞萨电子产品或技术信息(包括但不限于产品数据、图纸、图表、程序、算法和应用示例)而导致的侵权或涉及第三方专利、版权或其他知识产权的任何其他索赔,瑞萨电子不承担任何担保和责任。 3. 瑞萨电子或他人的任何专利、版权或其他知识产权均未以明示、暗示或其他方式授予许可。 4. 您不得更改、修改、复制或逆向工程任何瑞萨电子产品,无论是全部还是部分。瑞萨电子对因此类更改、修改、复制或逆向工程而导致您或第三方遭受的任何损失或损害不承担任何责任。 5. 瑞萨电子产品根据以下两个方面进行分类
物质由一种或多种元素组成。在正常条件下,自然界中除了稀有气体外,没有其他元素以独立原子的形式存在。然而,一组原子被发现以具有特征性质的一种物质形式存在。这样的原子组被称为分子。显然,一定有某种力将这些组成原子保持在分子中。将不同化学物质中的各种成分(原子、离子等)保持在一起的吸引力称为化学键。由于化合物的形成是各种元素的原子以不同方式结合的结果,因此它引发了许多问题。为什么原子会结合?为什么只有某些组合是可能的?为什么有些原子会结合而其他某些原子不会结合?为什么分子具有确定的形状?为了回答这些问题,人们不时提出了不同的理论和概念。这些理论和概念包括 Kössel-Lewis 方法、价壳电子对排斥 (VSEPR) 理论、价键 (VB) 理论和分子轨道 (MO) 理论。各种价态理论的演变和对化学键性质的解释与对原子结构、元素电子排布和周期表的理解的发展密切相关。每个系统都趋向于更稳定,而键合是自然界降低系统能量以达到稳定的方式。
与传统的非线性光学晶体(如BAB 2 O 4,KTIOPO 4或LINBO 3)相比,光子对的半导体集成源可能会在泵波长上运行。Bragg反射波导(BRW)的情况也是这种情况,将参数下转换(PDC)靶向电信C波段。藻类合金的大型非线性系数和光的强限制可实现极明亮的集成光子对源。在某些情况下,在BRW中观察到了大量有害的宽带光致发光。我们表明,这主要是由于核心附近线性吸收以及随后在半导体中深杂质水平的电子对辐射重组的结果。对于带有BRW的PDC,我们得出结论,在S波段的长波长端或短C波段附近运行的设备需要短的时间滤波,需要短于1 ns。我们预测,将工作波长转移到L波段会将光致发光量减少70%,并在材料组成中进行少量调整会导致其总还原90%。这样的措施使我们能够提高平均泵功率和/或重复率,这使得积分的光子对源具有芯片多吉格希氏兹对速率的可行,用于将来的设备。