采用密度泛函理论的第一性原理计算,表征了浓度 x = 0. 25、0.5 和 0.75 时 Ca 1-x Cr x O 化合物的结构性质、电子结构和由 Cr 杂质引起的铁磁性。通过声子谱计算获得动态稳定性。使用 Wu-Cohen 广义梯度近似计算结构参数,而电子和磁性则通过精确的 Tran-Blaha 修正的 Becke-Johnson 交换势确定。研究了晶体场、直接和间接交换分裂以确定铁磁态配置的起源和稳定性。Ca 1-x Cr x O 系统具有右半金属性,这通过 100% 的自旋极化和总磁矩的整数值得到验证。 Ca 0.75 Cr 0.25 O、Ca 0.5 Cr 0.5 O 和 Ca 0.25 Cr 0.75 O 是半金属铁磁体,其翻转间隙分别为 1.495、0.888 和 0.218 eV。因此,Ca 1-x Cr x O 材料是未来半导体自旋电子学中自旋注入可能应用的合适候选材料。
石墨烯纳米纤维(GNR)由于通过边缘结构和色带宽度的变化来精确调整电子性能的潜力,因此在纳米电子学上引起了显着关注。然而,GNR与高度渴望的锯齿形边缘(ZGNR)的合成,对旋转和量子信息技术至关重要,仍然具有挑战性。在这项研究中,提出了用于合成一类称为边缘延伸ZGNRS的新型GNR类的设计主题。此基序可以定期沿曲折边缘的边缘扩展进行控制。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。 所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。 此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。
由20多个新的和现有的DARPA计划组成,ERI旨在在商业电子界,国防工业基础,大学研究人员和DOD之间进行前瞻性的合作,以确保电子性能的远远超出传统缩放范围的限制
28. J. Amri, T. Souier, B. Malki, B. Baroux, “冷轧不锈钢板最终退火对钝化膜电子性能和抗点蚀能力的影响”,腐蚀科学,50 (2008) 431-435。29. B. Malki, T. Souier, B. Baroux, “合金元素对不锈钢点蚀的影响:一种建模方法”,电化学学会杂志。155 (2008) C583-C587。
a b s t r a k i n f o a r t i r e l这项研究是通过使用量子意式浓缩软件实现的密度函数理论方法来确定基于状态的带结构和密度的石墨电子性能的。进行计算之前,收敛研究是收敛的截止和K点。计算是使用能量截止的125 RY和K-Point 30 30 30。从频带结构曲线中,石墨的电子特性是能带隙0.01085552 eV的半导体。同时,根据状态曲线的密度,在费米水平附近的2 ev中获得了高密度。div>旋转和旋转的状态曲线的密度表明石墨是一种非磁性物质。
在拓扑结晶绝缘子锡尿酸罐中对费米水平的调整对于访问其独特的表面状态并优化其电子性能(例如Spintronics和Quantum Computing)至关重要。在这项研究中,我们证明了尿尿酸罐中的费米水平可以通过控制化学蒸气沉积合成过程中的锡浓度来有效调节。通过引入富含锡的条件,我们观察到X射线光电学光谱型锡和泰瑟列的核心水平峰值,表明费米水平的向上移动。通过紫外线光谱法测量的工作函数值的下降证实了这种转移,从而证实了SN空位的抑制。我们的发现提供了一种低成本,可扩展的方法,可以在锡尿酸罐中实现可调节的费米水平,从而在具有量身定制的电子特性的材料开发方面取得了重大进步,用于下一代技术应用。
从 I on /I off 电流比、跨导、亚阈值斜率、阈值电压滚降和漏极诱导势垒降低 (DIBL) 等方面评估了一种新型栅极全场效应晶体管 (GAA-FET) 方案的可靠性和可控性。此外,借助物理模拟,全面研究了电子性能指标的缩放行为。将提出的结构的电气特性与圆形 GAA-FET 进行了比较,圆形 GAA-FET 之前已使用 3D-TCAD 模拟在 22 nm 通道长度下用 IBM 样品进行了校准。我们的模拟结果表明,与传统的圆形横截面相比,扇形横截面 GAA-FET 是一种控制短沟道效应 (SCE) 的优越结构,并且性能更好。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
当前和未来的太空和机载光学仪器面临着巨大的技术和经济挑战,趋向于高度集成。因此,组件和由此产生的子组件的复杂性使增材制造 (AM) 成为一种颠覆性生产的手段。此外,随着性能要求的提高,光学系统变得越来越大,这需要开发新的制造工艺以保证预期的性能。陶瓷材料的另一个非常苛刻和具有挑战性的关键领域是半导体行业。事实上,这些设备的整个制造工艺流程非常激进,需要具有特殊化学、热和电子性能的材料,而只有陶瓷才能满足这些要求。此外,对灵活和复杂形状的需求以及在最近的短缺之后不断增长的搬迁和加速生产的愿望使得 3D 打印成为一种相关的应对措施。因此,我们不难理解为什么航空航天和电子应用代表着未来 10 年 3D 打印陶瓷技术部件最重要的收入机会,预计到 2030 年底将达到约 7.64 亿美元。
提出了以直接制造方法制备的激光诱导的多孔石墨烯(LIG),并还探索了其在可伸缩应变传感器中的应用以检测施加的应变。与在PI膜上通过激光涂鸦制备的胶片相比,在聚酰亚胺/聚二甲基硅氧烷(PI/PDMS)复合材料上表现出天然高的可伸缩性(超过30%)。带有LIG的PI/PDMS复合材料在PDM中显示出具有不同PI颗粒浓度的可调机械性能和电子性能。相对于拉伸应变,制备的LIG电阻的良好环状稳定性和几乎线性响应提供了其访问可穿戴电子产品的访问。为了提高PDMS/PI复合拉伸性,我们设计并优化了基里加米(Kirigami)启发的应变传感器,并在顶部表面上lig,从而大大增加了对应用应变的线性响应中的最大应变值从3%到79%。
二维材料具有独特的光电特性,是可调、高性能光电器件的有希望的候选材料,而这些光电器件对于光学检测和量子通信至关重要。[1–3] 为了实现二维纳米片的可扩展生产,液相剥离 (LPE) 已被广泛探索,但与微机械剥离相比,其电子性能往往会受到影响。[4–6] 在 LPE 中,块状晶体被剥离成几层纳米片,通常使用超声波能量在适当的溶剂和/或稳定剂存在下,然后通过离心选择尺寸。[7] 虽然单个 LPE 纳米片可能表现出很高的光电质量,但基于渗透纳米片薄膜的器件通常会存在纳米片之间较大的接触电阻。 [7–9] 降低片间电阻的一种策略是优化 LPE 工艺,以获得具有较大横向尺寸的高纵横比纳米片,从而减少片间连接的数量和