二维材料具有独特的光电特性,是可调、高性能光电器件的有希望的候选材料,而这些光电器件对于光学检测和量子通信至关重要。[1–3] 为了实现二维纳米片的可扩展生产,液相剥离 (LPE) 已被广泛探索,但与微机械剥离相比,其电子性能往往会受到影响。[4–6] 在 LPE 中,块状晶体被剥离成几层纳米片,通常使用超声波能量在适当的溶剂和/或稳定剂存在下,然后通过离心选择尺寸。[7] 虽然单个 LPE 纳米片可能表现出很高的光电质量,但基于渗透纳米片薄膜的器件通常会存在纳米片之间较大的接触电阻。 [7–9] 降低片间电阻的一种策略是优化 LPE 工艺,以获得具有较大横向尺寸的高纵横比纳米片,从而减少片间连接的数量和
当前和未来的太空和机载光学仪器面临着巨大的技术和经济挑战,趋向于高度集成。因此,组件和由此产生的子组件的复杂性使增材制造 (AM) 成为一种颠覆性生产的手段。此外,随着性能要求的提高,光学系统变得越来越大,这需要开发新的制造工艺以保证预期的性能。陶瓷材料的另一个非常苛刻和具有挑战性的关键领域是半导体行业。事实上,这些设备的整个制造工艺流程非常激进,需要具有特殊化学、热和电子性能的材料,而只有陶瓷才能满足这些要求。此外,对灵活和复杂形状的需求以及在最近的短缺之后不断增长的搬迁和加速生产的愿望使得 3D 打印成为一种相关的应对措施。因此,我们不难理解为什么航空航天和电子应用代表着未来 10 年 3D 打印陶瓷技术部件最重要的收入机会,预计到 2030 年底将达到约 7.64 亿美元。
对最常见的物理刺激的高度敏感和抗湿度的检测对于实时监测中的实际应用至关重要。在这里,据报道,一种简单而有效的策略可以达到高度湿度稳定的杂种复合材料,该复合材料能够同时且准确的压力和温度传感在单个传感器中。改善的电子性能是由于POLE(3,-4-甲基二氧二苯乙烯)(PEDOT)的平面性提高以及Pe-dot之间的电荷转移:聚苯乙烯磺酸盐(PEDOT:PSS)和多壁碳纳米管(CNT)(CNTS)通过强效应强度的相互作用。杂交复合材料中强大的形态引起的首选电子途径是高湿度稳定性的原因。这项研究还表明,该传感器对智能对象识别具有巨大的作用,高度为97.78%。以及摩尔电纳米生成剂(TENG)的位置检测能力,在智能分类方面,在不看到三重传感系统的潜在工业应用方面具有优势。
毛细作用可用于将各向异性胶体粒子引导到精确位置,并通过使用界面曲率作为施加场来定向它们。我们在实验中展示了这一点,在实验中,界面的形状通过钉扎到不同横截面的垂直柱上而形成。这些界面呈现出明确定义的曲率场,可沿复杂轨迹定向和引导粒子。轨迹和方向由理论模型预测,其中毛细作用力和扭矩与高斯曲率梯度和与曲率主方向的角度偏差有关。界面曲率在尖锐边界附近发散,类似于尖锐导体附近的电场。我们利用这一特性在优选位置诱导迁移和组装,并创建复杂结构。我们还报告了一种排斥相互作用,其中微粒沿曲率梯度轮廓远离平面边界壁。这些现象在微粒子和纳米粒子的定向组装中具有广泛的用途,在制造具有可调机械或电子性能的材料、乳液生产和封装方面有潜在的应用。
事实证明,最大化能带简并度和最小化声子弛豫时间对于推进热电学是成功的。与单碲化物合金化已被公认为是收敛 PbTe 价带以改善电子性能的有效方法,同时材料的晶格热导率仍有进一步降低的空间。最近有研究表明,声子色散的加宽衡量了声子散射的强度,而晶格位错是通过晶格应变波动实现这种加宽的特别有效的来源。在本研究中,通过精细控制 MnTe 和 EuTe 合金化,由于涉及多个传输带,PbTe 价带边缘附近的电子态密度显著增加,而密集的晶内位错的产生导致声子色散有效加宽,从而缩短声子寿命,这是由于位错的应变波动较大,这已由同步加速器 X 射线衍射证实。电子和热改进的协同作用成功地使平均热电性能系数高于工作温度下 p 型 PbTe 的报道值。
低温联合陶瓷LTCC是一个建立的材料平台,用于制造高质量,高性能和高可靠性电子设备;但是,传统上使用了足够宽的加工窗口的系统,具有含PB的眼镜。Micromax™Greentape™LF95C已被引入为无PB的LTCC系统,具有许多有吸引力的物理,热和电子性能,包括可重复的收缩,10 GHz时<0.005的介电介电损失,refire稳定性以及全基因金属化系统。陶瓷通过玻璃粘性流量致密,该流程提供了在宽过程窗口上共弹的能力。高导电性AG金属化,低DF和可重复的收缩和DK使LF95C成为生产高可稳定性电子设备的出色材料平台,同时促进可持续性目标并致力于满足覆盖范围和ROHS计划的精神。关键字陶瓷胶带,陶瓷电路,陶瓷电子设备,无铅,LF95C,低温联合陶瓷,LTCC,无PB,无PB,厚膜。
采用随机策略结合群论、图论和高通量计算,系统地扫描了共87种新的单斜硅同素异形体。新的同素异形体中,13种具有直接或准直接带隙,12种具有金属特性,其余为间接带隙半导体。这些新型单斜硅同素异形体中有30多种表现出大于或等于80 GPa的体积模量,其中3种表现出比金刚石硅更大的体积模量。只有两种新的硅同素异形体表现出比金刚石硅更大的剪切模量。详细研究了所有87种Si单斜同素异形体的晶体结构、稳定性(弹性常数、声子谱)、力学性能、电子性能、有效载流子质量和光学性能。五种新的同素异形体的电子有效质量ml小于金刚石硅的电子有效质量。所有这些新型单斜硅同素异形体在可见光谱区都表现出强吸收。结合它们的电子带隙结构,这使它们成为光伏应用的有前途的材料。这些研究极大地丰富了目前对硅同素异形体的结构和电子特性的认识。
拓扑量子材料的独特电子性能,例如受保护的表面状态和外来的准粒子,可以提供带有垂直磁各向异性磁铁的外部无磁场磁力切换所需的平面自旋偏振电流。常规自旋 - 轨道扭矩(SOT)材料仅提供平面自旋偏振电流,而最近探索的具有较低晶体对称性的材料可提供非常低的平面自旋偏振电流组件,不适用于能量固定的SOT应用。在这里,我们使用拓扑WEYL半候选牛头牛Tairte 4具有较低的晶体对称性,在室温下在室温下表现出大型的脱离平面阻尼样SOT。我们基于Tairte 4 /ni 80 Fe 20异质结构进行了自旋 - 扭矩铁磁共振(STFMR)和第二次谐波霍尔测量,并观察到大型平面外阻尼样的SOT效率。估计平面外旋转大厅的构成为(4.05±0.23)×10 4(ℏ⁄ 2 e)(ωm)-1,这比其他材料中报道的值高的数量级。
太阳能转换过程不仅存在于太阳能电池中,也存在于光催化中,涉及太阳光收集和光激发电荷载流子分离/传输。[8,9] 异质结构是将具有不同性质的材料集成在一起,通常可以收集来自多种组分的广泛太阳光,并且受益于异质界面形成的内部电场而具有显著的光激发电荷分离/传输特性。[10] 因此,探索合适的组分来构建异质结构是提高太阳能转换效率的一种有效且简便的策略。如今,二维材料由于其高比表面积、[11] 大量的表面暴露原子、[12] 以及优异的机械、光学和电子性能,在光电器件、催化和太阳能转换领域引起了极大的研究兴趣。[13,14] 得益于层状结构特性,二维材料易于构建成异质结构。通常,二维异质结构包括垂直异质结构(其中各种二维材料层垂直堆叠)[15] 和横向异质结构(其中多个二维材料横向无缝缝合)。[16] 目前报道的二维异质结构大多
在这里,我们提出了一种镜面对称魔术角扭曲三层石墨烯的理论。通过具有远距离隧道矩阵元素的哈伯德模型来描述电子特性。通过求解平均场哈伯德模型获得电子性能。我们获得具有特征性平坦带和狄拉克锥体的带结构。在电荷中立性时,打开电子电子相互作用会导致金属至抗磁相变,其Hubbard相互作用强度比其他石墨烯多层小得多。我们分析了抗铁磁状态的固定性对六角硼氮化物封装引起的对称破裂的性能,以及由将狄拉克锥与平面带混合的电场的应用引起的镜像破坏。此外,我们探索了系统的拓扑特性,揭示了隐藏的量子几何形状。尽管平坦的频带为零,但在MoiréBrillouin区域上的多型浆果曲率分布表现出非平凡的结构。最后,我们提出了一种调整此量子几何形状的机制,提供了控制系统拓扑特性的途径。