电子-分子碰撞过程指的是分子捕获低能电子(即能量高达 ∼ 20 eV)形成短暂、不稳定的分子阴离子,然后解离成几个碎片(一个负离子,其他都是中性),这是一个长期研究的过程,称为解离电子附着(DEA)。DEA 是基于电子-分子碰撞的基本相互作用之一 [1-8],在凝聚态物质 [9-12]、气态电子 [13] 到低能等离子体 [14] 等多个领域中发挥着重要作用。自然环境中 DEA 与分子相关的低能电子通常是物质与高能光子或粒子之间初级相互作用的副产物。研究表明,这些电子在生物过程中起着关键作用,例如引发 DNA 链断裂和其他 DNA 解离过程 [ 15 – 18 ] 以及蛋白质的辐射损伤 [ 19 ]。甲酰胺 (HCONH 2 ) 被广泛认为是研究蛋白质和肽化学的原型模型分子,因为它具有简单而丰富的结构,其中包括一个酰胺键。甲酰胺分解成其他值得注意的简单有机分子(例如 CH、HCN、HCNO 等)已在实验和理论环境中得到广泛研究。甲酰胺由许多复杂生物分子(如蛋白质和核酸)的祖先组成,被认为是简单生物分子进化为复杂结构的重要环节。此外,甲酰胺由于其 NC 酰胺键而引起了广泛关注。这一特征使甲酰胺成为研究电子捕获的典型分子
48 Cr是双光子发射计算机断层扫描的有前途的放射性同位素。1)提出的方法可以实现高空间分辨率和高信号噪声比。2)作为48 cr,一对112和308-kev Photons可用于重合成像。1)我们计划在46 Ti(α,2 N)48 Cr反应中产生48 Cr。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。 在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。 将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。 因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。 48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。 将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。 在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。 希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。 将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。用1 ml的c溶解残留物。 HF加热,并将溶液蒸发至干燥。通过加热将残留物溶解在6 ml的4.5 m HF中。随后,将溶液馈入阴离子交换柱(Muromac 1x8,100-200 et chemes,10 mm i.d.×110毫米高)。用9 ml(1 ml×9)的4.5 m HF和35 mL(5 ml×7)的C洗涤树脂。 HF。组合了4.5 m HF的分数,并将3 mL用于ICP-MS测量,以确认NAT TI的污染。使用阳离子交换色谱法将4.5 m HF的其余部分蒸发至干燥,并进一步纯化48 V。将残基溶解在3 ml的0.5 m HNO 3中。溶液(1 mL×3)被送入阳离子交换柱(Muromac 50wx8,100-200 Mesh,5 mm I.D.×50毫米高)。用0.5 m HNO 3和5 ml(1 ml×5)的3 ml(1 ml×3)洗涤树脂,为6 m HNO 3。用GE检测器对阴离子和阳离子交换柱进行每个洗脱液进行γ射线光谱法进行了γ射线光谱法,以获得51 cr和48 V的洗脱曲线。以评估每个c的Nat Ti的洗脱曲线。 HF
编号1 *电子捕获量计的开发进度报告。W. R. Glongstun,1943年7月。编号2 *一个项目,用于测试压力模式对预测的潜在有用性。H. W. Norton,G。W。Brier和R. A. Allen,1944年1月。编号3 *关于在某些地区和期间之间间隔的暴风雨期间持续时间的初步报告。L. L. Weiss,1944年1月。编号4 *五天平均表面图与其组件每日图之间的某些关系。C. B. Johnson,1944年1月。编号5改进预测趋势方法。P. F. Clapp,1943年7月。编号6(未分配。)编号7 *在深度低点以南的新移动中心的形成。R. C. Gentry,1944年1月。编号8 *对10,000英尺高的预测流量模式的轨迹方法进行了研究。H. G. Dorsey和G. W. Brier,1944年1月。编号9 *关于格陵兰,冰岛和英格兰停滞高点的初步报告,以及7月和8月的白令海和阿拉斯加。R. C. Gentry和L. L. Weiss,1944年1月。 编号 10 *伦敦温度的持久性。 H. W. Norton和G. W. Brier,1944年1月。 编号 11 *选择“最佳”预测的技能。 G. W. Brier,1944年1月。 编号 关于上空空气中跨压力和温度变化的12个注释。 R. C. Gentry,1944年1月。 (未出版。) 编号 (未出版。)R. C. Gentry和L. L. Weiss,1944年1月。编号10 *伦敦温度的持久性。H. W. Norton和G. W. Brier,1944年1月。编号11 *选择“最佳”预测的技能。G. W. Brier,1944年1月。编号关于上空空气中跨压力和温度变化的12个注释。R. C. Gentry,1944年1月。(未出版。)编号(未出版。)13调查和实际使用在上层图表上构建六个小时的isallobars的方法。E. M. Cason和P. F. Clapp,1944年1月。编号大气的重量变化分为三层。L. L. Weiss,1944年2月。(联合国出版。)编号15 *关于亚特兰大和迈阿密地区(北卡罗来纳州,佐治亚州和佛罗里达州)的预测预测的一些注释。格雷迪·诺顿(Grady Norton),1944年2月。编号16 *预报员信心的验证以及在天气预报中使用概率语句的使用。G. W. Brier,1944年2月。编号17 *伴随亚速尔群岛区域的气旋活动的压力模式。R. L. Pyle,1944年3月。编号18 *正常的平均虚拟温度和空气柱的重量在海平面和10,000英尺之间。工作人员,1944年7月的扩展预报部分。编号19 *在西海岸地层形成和耗散期间温度变化。Morris Neiburger(加利福尼亚大学洛杉矶分校),1944年7月。编号20在西风中长波运动的经验研究。P. F. Clapp,1944年7月。(未租用租用。)编号21 *有关预后天气图表制备的报告集。J. R. Fulks,H。B。Wobus和S. Teweles,由C. P. Mook编辑,1944年10月。编号22 *在较低对流层中表面温度与平均虚拟温度之间的关系。W. M. Rowe,1944年11月。编号编号23 *预测加利福尼亚州奥克兰机场的Stratus Cloud天花板形成时间。爱德华·M·弗农(Edward M. Vernon),1945年4月。24 *对纬向指数的极性反气旋发生和相关变化的研究。杰罗姆·纳米亚斯(Jerome Namias),1945年9月。编号25 *有关洛杉矶地区客观降雨预测研究计划的进度报告。J. C. Thompson,1946年7月。编号26 A盆地中定量降水预测的研究。Glen W. Brier,1946年11月。$ 0.25号27客观的预测天气最低温度的客观方法,D。C。C. P. Mook和Saul Price,1947年8月。$ 0.35号28 *夏威夷群岛预测远程降水的可能性。Samuel B. Solot,1月1日。编号29预测田纳西山谷五天降水的客观方法。William H. Klein,1948年7月。^ _ $ 0-30编号30关于降水的人工产生的第一部分报告:俄亥俄州层状云,1948年。Richard D. Coons,R。C。Gentry和Ross Gunn,1948年8月。$ 0.30