TCEM 路线图:SI 的基础、基本测试和量子测量 EMPIR 支柱:开发和服务于与计量相关的基础科学 触发因素:未来量子技术的发展和基础科学的开发需要新的(基于量子的)计量学。新科学将为计量学创造新的机会。当今的纳米技术可以访问量子效应控制设备功能的维度。这一发展创造了利用量子效应开发技术并实现新功能范式的机会,例如信息和通信技术中的量子密钥分发。与此同时,新的量子现象正在以越来越快的速度被发现,这拓宽了量子技术的基础。由于任何成功的工程工作都依赖于可靠的测量,因此需要新的基于量子的计量学来推进量子技术并利用基础科学的成果。计量学本身应基于不受时间和空间影响的通用标准。为此,SI 基本单位应与自然界的基本常数相联系。这种联系通过量子效应实现,可提供前所未有的准确性。为了进一步提高测量的灵敏度和准确性,基础科学将提供克服噪声限制和降低测量侵入性的策略。目标 1.根据 CIPM 建议实际实现 SI 单位的新定义 该目标侧重于实际实现千克、开尔文和安培的新定义,它们将分别与普朗克常数、玻尔兹曼常数和基本电荷相联系 1 。瓦特天平允许将质量追溯到普朗克常数。测量包括两个步骤。在称重阶段,质量上的重力与磁场中载流线圈上的磁力相平衡。在移动阶段,当同一线圈穿过磁场时,测量线圈中感应的电压。使用约瑟夫森和量子霍尔效应确定电压和电流。在理想情况下,磁场在两个阶段保持稳定,运动得到完美控制,设备的任何热漂移都可以忽略不计。改进的瓦特平衡实验将以更准确的方式解释与理想情况的任何偏差。然而,此外,更实用的设计将定期生成将质量与普朗克常数联系起来的数据。脉冲驱动的约瑟夫森电压标准提供基于量子的可编程电压瞬变,带宽为数十 kHz。它们可用于生成量子噪声测温的噪声信号,以实现基于玻尔兹曼常数的新定义的开尔文。安培与基于量子的单位系统中的基本电荷相关。一个概念上简单的实际实现是单电子电流源,它在固定驱动频率的每个周期产生整数个基本电荷。基于半导体和超导体技术,有前景的设备概念已经得到展示。
随着半导体器件的缩小尺寸出现饱和迹象,微电子学的研究重点转向寻找基于新颖物理原理的新型计算范式。电子自旋是电子的另一个固有特性,它为目前在微电子学中使用的基于电子电荷的半导体器件提供了附加功能。自旋电流注入、自旋传播和弛豫以及栅极的自旋方向操控等几个基本问题已成功得到解决,从而使电子自旋能够用于数字应用。为了通过电方法产生和检测自旋极化电流,可以采用磁性金属触点。Boroš 等人 [1、2] 讨论的铁磁触点应足够小,以构成具有明确磁化方向的单个磁畴。小畴的磁矩在过去曾被成功利用,现在仍用于在磁性硬盘驱动器中存储信息。由此,二进制信息被编码到畴的磁化方向中。畴的磁化会产生可检测到的杂散磁场。交变磁矩会产生方向相反的磁场。读头可以检测到磁场并读取信息。Khunkitti 等人 [ 3 ] 的研究显示,高灵敏度磁头是实现超高磁密度磁数据存储技术的重要因素。为了写入信息,需要通过流入磁头的电流产生接近磁畴的磁场。正如 Khunkitti 等人 [ 4 ] 所指出的,记录密度主要取决于磁性介质的特性。如果没有外部磁场,磁畴的磁化将得以保留,不会随时间而改变。因此,在电子设备中添加磁畴可实现非易失性,即无需外部电源即可保持设备功能状态的能力。此外,可以通过在小磁畴中运行自旋极化电流来操纵其磁化方向。如果电流足够强,磁畴的磁化方向与自旋电流极化方向平行。通过电子电流对磁畴进行纯电操控,为开发一种具有更高可扩展性的概念上新型的非易失性存储器提供了令人兴奋的机会。冲击自旋极化电流可以由流经另一个铁磁体的电荷电流产生,该铁磁体与小磁畴之间由金属间隔物或隧道屏障隔开。由两个铁磁触点组成的夹层结构的电阻在很大程度上取决于触点在平行或反平行配置中的相对磁化方向。因此,编码到相对磁化中的二进制信息通过夹层的电阻显示出来。这种新兴的存储器被称为磁阻存储器。磁阻存储器结构简单。它们具有出色的耐用性和高运行速度。磁阻存储器与金属氧化物半导体场效应晶体管制造工艺兼容。它们为概念上新的低功耗数据计算范式开辟了前景