我们将基于多体扰动理论和累积膨胀的AB从头算计算与角度分辨光发射光谱(ARPES)相结合,以量化高度掺杂的半导体过渡金属二核基因1 T -HFS中的电子样本相互作用。arpes揭示了传导带底部的准颗粒激发附近的卫星光谱特征的出现,这表明偶联与200 MeV的特征能量的玻体激发偶联。我们对光发射光谱函数的第一个原理计算表明,这些特征可以归因于电子耦合到载体等离子(掺杂诱导的集体电荷密度频率)。我们进一步表明,在表面上减少筛选会增强电子 - 种类的相互作用,并主要负责等离激子极性子的出现。
在当前的集成电路实现中,无法实时测量 Δ𝜙 𝐷𝑆,但如果最初校准了误差 Δ𝜙 𝐷𝑆 (𝑇),则可以实现其在线温度补偿。虽然很少有作品介绍过这个问题 [2-4],但它们都没有 (i) 设想出专用的装置来测量漂移 Δ𝜙 𝐷𝑆 (𝑇) ,(ii) 确定了此类测量的关键噪声贡献,以及 (iii) 通过实验从电子耦合漂移中分离出由模式分裂和品质因数的温度变化引起的机械漂移。这项工作完成了所有这些任务,使用图 1a 所示的三轴单驱动陀螺仪的俯仰轴作为测试设备。该设备的频率在 20 kHz 范围内,间隔约 500 Hz,驱动和感应品质因数分别在 7000 和 700 范围内 [5]。
摘要:量子技术的全面发展需要易于制备的材料,在这些材料中可以有效地引发、控制和利用量子相干性,最好是在环境条件下。胶体生长的量子点 (QDs) 的固态多层膜非常适合这项任务,因为可以通过调节尺寸、点间连接器和距离来组装电子耦合 QDs 网络。为了有效地探测这些材料的相干性,需要对它们的集体量子力学耦合态进行动态表征。在这里,我们通过二维电子光谱探索了电子耦合的胶体生长的 CdSe QDs 的固态多层膜的相干动力学,并通过详细的计算对其进行了补充。在环境条件下捕获了多个 QD 上非局域化相干叠加态的时间演化。因此,我们为此类固态材料中的点间相干性提供了重要证据,为这些材料在量子技术中的有效应用开辟了新途径。■ 简介
摘要:配备光学循环中心 (OCC) 的多原子分子能够在光学激发期间实现连续的光子散射,是推动量子信息科学发展的令人兴奋的候选者。然而,随着这些分子的尺寸和复杂性不断增加,复杂的振动电子耦合对光学循环的相互作用成为一个关键但相对未被探索的考虑因素。在这里,我们使用高分辨率分散激光诱导荧光和激发光谱对大规模含 OCC 分子中的费米共振进行了广泛的探索。这些共振表现为振动耦合,导致光学活性谐波带附近的组合带借用强度,这需要额外的再泵浦激光器才能实现有效的光学循环。为了减轻这些影响,我们探索通过苯环上的取代或 OCC 本身的变化来改变振动能级间距。虽然完全消除复杂分子中的振动耦合仍然具有挑战性,但我们的研究结果突出了显著的缓解可能性,为优化大型多原子分子中的光学循环开辟了新途径。
在二维ISING型nematic量子临界点附近,列级参数的量子波动与电子耦合,从而导致非Fermi液体行为和非常规的超导性。这两个效应之间的相互作用已通过Eliashberg方程进行了广泛的研究,以实现超导间隙。但是,以前的研究通常依赖于可能在结果中引入不确定性的各种近似值。在这里,我们在没有这些近似值的情况下重新访问了此问题,并检查其去除方式如何改变结果。我们在数值上求解了质量重新归一化A 1(p)的四个自洽的EliAshberg积分方程,化学势重新归一化A 2(p),配对函数φ(p)和列米的自我(偏振)函数π(q)使用迭代方法π(q)。我们的计算保留了这些方程式的明确非线性和动量依赖性。我们发现,丢弃一些常用的近似值可以更准确地确定超导间隙Δ=φ /a 1和临界温度t c。EliAshberg方程具有两个不同的收敛间隙解:扩展的S波间隙和D x 2 -2 -y 2波间隙。后者是脆弱的,而前者对小扰动的强大。
纳米晶体 (NC) 现已成为光子应用的既定基石。然而,它们在光电子学中的集成尚未达到同样的成熟度,部分原因是人们认为瓶颈在于跳跃传导导致的固有有限迁移率。人们做出了巨大努力来提高这种迁移率,特别是通过调整粒子表面化学以实现更大的粒子间电子耦合,并且已经实现了 ≈ 10 cm 2 V − 1 s − 1 的迁移率值。人们承认,这个值仍然明显低于 2D 电子气体中获得的值,但与具有类似约束能的外延生长异质结构中垂直传输的迁移率相当。由于进一步提高迁移率值的前景似乎有限,因此建议应将精力集中在探索跳跃传导带来的潜在好处上。这些优势之一是扩散长度对偏置的依赖性,这在设计基于 NC 的设备的偏置可重构光学响应方面起着关键作用。本文将回顾构建偏置激活设备的一些最新成果,并讨论设计未来结构的基本标准。最终,跳跃传导是产生低无序材料无法提供的新功能的机会。
通过将库珀对的反平行电子旋转沿空地外方向锁定,使平面上临界磁场的平面上限上限超过了保利的极限。首先是在过渡金属二分法的完全二维单层中明确证明的,具有大型旋转轨道耦合和破裂的反转对称性。从那时起,几项研究表明它也可以存在于分层的散装材料中。在我们先前的研究中,我们阐明了基于散装超导性超导性的基本微观机制,基于通过绝缘层和限制反演对称性而导致的超导层之间的电子耦合减少。但较早的研究表明,在某些过渡金属二甲藻元中多型pauli paparagnetic极限也违反了。在这里,使用热容量测量值我们明确证明,原始的非中心体积4H A -NBSE 2多型物质显着违反了Pauli的极限。在理论模型中使用了使用实验确定的晶体结构从Ab ITIOL计算获得的频带结构参数,该模型在理论模型中使用,该模型提供了仅基于破裂的反转对称性的ISING保护的微观机制。
排队技术旨在通过降低两辆或多个电子耦合车辆之间的距离来实现燃料节省。这项技术最近在德国和加利福尼亚州的重型卡车上进行了公共高速公路测试。这项研究的目的是评估其他道路使用者之间的接受程度以及受到接受因素的影响。在德国和加利福尼亚州进行了一份在线问卷,总共n = 536名参与者。他们收到了有关卡车排驾驶(1级和2级自动化)的信息,并回答了有关他们对技术的态度以及与卡车排合作的行为意图的问题。总体结果表明,有70%的受访者表示对技术的接受程度,而加利福尼亚州的接受率显着高于德国。德国受访者更愿意驶入排车辆的差距,并预示着更大的排间隙。对技术接受模型(TAM)的改编表明,预期的有用性以及共享高速公路的预期易度性是与排车辆合作的行为意图的最强预测指标。但是,这些变量无法预测排在排车辆之间的意图。切割车辆是潜在的安全风险,并降低了排驾驶的效率。因此,未来的研究应集中于发现行为对策。2020 Elsevier Ltd.保留所有权利。
摘要:Singlet Pission(SF)已被探索为通过产生更多激子来改善光伏性能的可行途径。通过高度的鸡际耦合实现了有效的SF,从而有助于电子超级交换以产生三重态。然而,强烈耦合的发色团通常会形成准分子,可以用作SF中间体或低能陷阱位点。然而,随后的破坏性过程需要最佳的电子耦合,以促进最初准备的相关三重态对孤立的三重态生产。构象柔韧性和介电调节可以通过调节鸡际表的电子相互作用来提供调整SF机制和效率的方法。在密集堆叠的传统有机固体中,这种策略不能轻易采用。在这里,我们表明SF活性发色团的组装周围定义明确的溶液稳定金属 - 有机框架(MOF)可以是模块化SF工艺的绝佳平台。一系列三个新的MOF,由9,10-双(乙烯烯基)蒽衍生的支柱建立,显示了拓扑定义的堆积密度和炭疽核的构象柔韧性,以决定SF机制。各种稳态和瞬态光谱数据表明,最初制备的单线种群可以偏爱准分子介导的SF或直接SF(均通过虚拟电荷转移(CT)状态)。这些溶液稳定的框架提供了介电环境的可调性,以通过稳定CT状态来促进SF过程。鉴于MOF是各种光物理和光化学发展的理想平台,因此产生大量长寿三胞胎可以在各种光子能量转换方案中扩展其实用程序。
石墨烯是一种二维材料,以其出色的电子特性而闻名。然而,为了在实际设备中利用这些特性,必须大大减少与基板和任何周围材料的电子耦合。六方氮化硼 (hBN) 是另一种二维材料,在这方面非常有前景。它既可用于将石墨烯与基板隔离,也可用于作为栅极介电材料。虽然通过机械剥离和转移获得的设备确实证实了石墨烯/hBN 异质结构的强大潜力,但可扩展且可靠的生长技术仍有待证明:开发制造二维异质结构的新方法非常重要。通过结合项目合作伙伴的专业知识和资源,拟议研究的目的是探索和开发在与 Si 微电子兼容的基板上制造石墨烯/hBN 异质结构的各种方法。为了实现这些目标,石墨烯/hBN 异质结构将通过两种主要方法生长:分子束外延和化学气相沉积。该项目过程中开发的特定成核增强横向图案化技术可能会改善该工艺。将应用先进的显微镜和光谱技术来提供有关薄膜形态、晶体学、化学和电学特性的信息。将通过从头算密度泛函理论进行原子计算,并辅以大规模动力学蒙特卡罗模拟,以了解生长机制和最佳工艺条件。