摘要纳米钻阵列与光电探测器的组合可以成为SI平台上大规模制造微型和具有成本效益的折射率传感器的策略。然而,互补的金属 - 氧化物 - 血管导体(CMOS)制造过程尤其是在可用于制造结构的材料上的限制。在这里,我们专注于使用CMOS兼容的过渡金属氮化钛(TIN)来制造纳米孔阵列(NHAS)。我们研究了使用高精度工业工艺制造的锡NHA的光学性质(50 nm,100 nm和150 nm),用于在集成的等离子,等离子折射指标传感器中使用。反射率测量显示出明显的Fano形共振,共振长度在950至1200 nm之间,这可以归因于通过NHA的非凡光学传输(EOT)。使用测量的材料介电常数作为输入,测得的光谱是通过具有很高准确性的模拟来重现的:模拟和测量的共振波长偏离小于10 nm,平均在30°和40°°的发病角度下观察到的平均4 nm偏差为4 nm。我们的实验结果表明,锡层从50到150 nm的厚度增加导致灵敏度从614.5 nm/riU增加到765.4 nm/riU,我们将其归因于具有空间扩展SPPS的孔中的单个LSPR之间的强耦合。我们的结果可用于提高锡NHA在片上等离子折射率传感器中的应用。
本工作利用溶液浇铸工艺制备了不同重量比(0、2、4、6、8、10 wt%)的氧化镁、氧化石墨烯聚邻苯二胺(GO-MgO-PoPDA)增强的纯(PVA)聚合物薄膜。研究了纳米粒子氧化镁(MgO)和氧化石墨烯(GO)的不同重量比对纳米复合薄膜介电性能的影响。使用 FTIR、SEM、X-RAY 对纳米复合材料进行表征。介电性能结果表明,随着(GO-MgO-PoPDA)纳米粒子的添加、施加电场频率的增加和粒子含量的增加,制备的薄膜的交变电导率值增大,而介电常数值随(GO-MgO-PoPDA)纳米粒子含量的增加而增大,但随频率的增加而降低。而当添加纳米粒子且随着频率的增加而制备的薄膜的介电损耗系数降低。
自旋电子学应用基于半金属性。这是一种新兴现象,指化合物在一个自旋通道中表现出金属性质,而在相反的自旋通道中表现出绝缘或半导体性质。6 半金属 (HM) 化合物于 1980 年被发现,在过去十年中,人们在理论和实验上对自旋注入进行了广泛的研究。7 – 12 这是一种普遍存在的现象,已在多种其他材料中观察到,包括 Heusler 合金、过渡金属氧化物和稀磁半导体 13 – 19 HM 的自旋相关独特性质为构建新型设备提供了机会,例如磁传感器和非挥发性磁性随机存取存储器,它们在自旋极化和微电子的综合作用下运行。20,21
此外,铝还可用于制造薄膜晶体管 (TFT)、光电探测器、太阳能电池和许多其他设备 [3]。由于铝易于沉积、表面电阻低,并且能够引入背面场效应 (BSF),从而最大限度地降低设备背面的载流子复合率,因此在太阳能电池制造中被广泛用作背接触 [4,5]。在太阳能电池中,铝触点的高反射特性可用作光捕获解决方案,其中低能光子将被倾斜反射回吸收层。这增加了设备中光(光子)的光路长度,从而提高了薄膜太阳能电池的吸收效率、光电流产生和量子效率,特别是在长波长区域 [6]。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
《纳米材料和生物结构文摘》第 17 卷,第 4 期,2022 年 10 月 -12 月,第 134 页。 1431-1440 增强 BaZr 1-x Ti x O 3 无铅陶瓷的介电和储能性能 A. Ahmad a 、S. Uddin b,c 、MF Nasir a 、G. Dad c 、A. Zaman a,* 、V. Tirth d,ea 物理系,里法国际大学,伊斯兰堡 44000,巴基斯坦 b 物理系,政府学院海亚塔巴德,白沙瓦 25000,巴基斯坦 c 物理系,库尔塔巴科学与信息技术大学,白沙瓦 25000,巴基斯坦 d 机械工程系,工程学院,哈立德国王大学,阿卜哈 61421,阿西尔,沙特阿拉伯王国 e 先进材料科学研究中心(RCAMS),哈立德国王大学古拉格,阿卜哈 61413,阿西尔,邮政信箱号 9004,沙特阿拉伯王国 铁电 BaZr 1-x Ti x O 3 (0 ≤ x ≤ 8) 陶瓷组合物采用固相反应法合成。该材料在空气中以 1250 °C 煅烧。在这项工作中,我们研究了室温下 BaZr 1-x Ti x O 3 的铁电、储能和微波介电性能。XRD 谱表明 BaZr 1-x Ti x O 3 组合物具有钙钛矿结构,空间群为 Pm-3m。SEM 形貌表明晶界数量的增加导致极化增加。通过改变电场(范围)和陶瓷材料的成分,从 (PE) 环路计算出储能性能。已经观察到相对介电常数随温度的增加而增加。据报道,存储能量密度 (W rec ) 为 0.043 J/cm 3 ,而效率 (ɳ) 在室温下为 57%,在含量 (x=0.06) 下为 40 kv/cm。钛酸钡锆 (BZT) 将成为储能装置的绝佳候选材料。 (2022 年 9 月 15 日收到;2022 年 12 月 9 日接受) 关键词:BaZr 1-x Ti x O 3 钙钛矿、固态路线、铁电、储能、无铅 1. 简介如今,任何人都面临着任何类型能源的危机,他们对能源资源的需求日益增加。在未来三十年,这些需求在世界范围内应该翻一番 [1]。由于大量使用,自然资源煤炭、石油和天然气将几乎耗尽。这还会造成污染、温室效应、气溶胶、酸雨和全球变暖 [2, 3]?需要寻找可再生能源,并储存这些可再生能源,这是一个问题[4]这些可再生能源本质上都是电能,因此需要储存它[5]在过去的几十年里,双极电容器以及高能量存储密度是目前可用的储能设备中最好的选择,即电池、双极电容器、燃料电池和超级电容器[6-8]。电介质具有高能量存储(ES)材料,因为它们具有相对较大的可释放能量密度(W rec)、高效率(η),以及适当的电场击穿强度(BDS)[9]。介电电容器的能量密度可以通过方程曲线下的面积计算,Wrec = ∫ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝 𝑟𝑟 𝑝𝑝 𝑖𝑖 (1)
** 标示的消耗和排放值是根据法定测量方法确定的。WLTP 测试循环于 2022 年 1 月 1 日完全取代了 NEDC,这意味着自此日期之后,对于获得新类型批准的车辆,将不再提供 NEDC 数据。这些数据并非针对某款特定车辆,也不是产品的一部分,而仅用于比较不同车辆类型。附加设备和附件(附加部件、不同轮胎规格等)可能会改变相关的车辆参数,例如重量、滚动阻力和空气动力学,并且结合天气和交通状况以及个人驾驶风格,可能会影响车辆的燃油消耗、电力消耗、二氧化碳排放量和性能数据。由于测试条件更为真实,测得的消耗和二氧化碳排放量在许多情况下高于根据 NEDC 测得的值。这可能导致自 2018 年 9 月 1 日起的车辆税发生相应变化。 有关 WLTP 和 NEDC 之间差异的更多信息,请访问 www.audi.de/wltp 有关新乘用车官方燃油消耗数据和官方特定二氧化碳排放量的更多信息,请参阅“所有新乘用车型的燃油经济性、二氧化碳排放量和功率消耗指南”,该指南可在所有销售经销店和 DAT Deutsche Automobil Treuhand GmbH、Helmuth-Hirth-Str. 1, 73760 Ostfildern-Scharnhausen, Germany(www.dat.de)免费获取。
TRON能量损失光谱被彻底考虑。研究表明,在底部电极中的氧气浓度较高(约14.2±0.1 at。%)与顶部电极相比(约11.4±0.5 at。%)。以下平均化学计量公式为锡0。52 o 0。20上衣和锡0。54 O 0。 26底部和底部电极的底部。 由于血浆中的氧杂质与SIO 2和HFO 2的扩散相比,血浆中的氧气量不足。 这种不对称性,以及在Si底物上生长的样品的结果表明,与从SIO 2底物和PEALD生长过程中从SIO 2底物和HFO 2介电介质的扩散相比,与血浆本身的氧杂质相比是一个较小的部分。 我们观察到HF氧化物层和Ti nitride Electrodes以及SIO 2界面之间的界面上的TIO 2存在。 EELS分析导致底部锡X O Y的带隙范围为2.2至2.5 eV,而顶部锡X O Y的带隙范围为1.7-2.2 eV,使用光吸收光谱与顶部Tin X电极(1.6±01 eV)上的结果公平吻合。 测量板电阻,电阻率和温度系数通过在20到100°C的顶部锡x o y电极上的四点探头的电阻系数对应于半导体的典型值。54 O 0。26底部和底部电极的底部。由于血浆中的氧杂质与SIO 2和HFO 2的扩散相比,血浆中的氧气量不足。这种不对称性,以及在Si底物上生长的样品的结果表明,与从SIO 2底物和PEALD生长过程中从SIO 2底物和HFO 2介电介质的扩散相比,与血浆本身的氧杂质相比是一个较小的部分。我们观察到HF氧化物层和Ti nitride Electrodes以及SIO 2界面之间的界面上的TIO 2存在。EELS分析导致底部锡X O Y的带隙范围为2.2至2.5 eV,而顶部锡X O Y的带隙范围为1.7-2.2 eV,使用光吸收光谱与顶部Tin X电极(1.6±01 eV)上的结果公平吻合。测量板电阻,电阻率和温度系数通过在20到100°C的顶部锡x o y电极上的四点探头的电阻系数对应于半导体的典型值。
完整作者名单:袁鲲鹏;大连理工大学;张晓亮;大连理工大学能源与动力工程学院;常政;大连理工大学能源与动力工程学院;唐大伟;大连理工大学能源与动力工程学院;胡明;南卡罗来纳大学机械工程学院
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC05-00OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。