此外,铝还可用于制造薄膜晶体管 (TFT)、光电探测器、太阳能电池和许多其他设备 [3]。由于铝易于沉积、表面电阻低,并且能够引入背面场效应 (BSF),从而最大限度地降低设备背面的载流子复合率,因此在太阳能电池制造中被广泛用作背接触 [4,5]。在太阳能电池中,铝触点的高反射特性可用作光捕获解决方案,其中低能光子将被倾斜反射回吸收层。这增加了设备中光(光子)的光路长度,从而提高了薄膜太阳能电池的吸收效率、光电流产生和量子效率,特别是在长波长区域 [6]。
大小(2×2 mm 2)β -GA -GA 2 O 3 Schottky屏障二极管(SBD)的电气和陷阱特性已有50至350 K报道。理想因素(n)从1.34降低到几乎统一,随着温度从50 K上升到350 K,表明近乎理想的肖特基特征。低温温度(100 k)处的泄漏电流被显着抑制,表明在低温下的状态堵塞性能出色。载体浓度(N S)和Schottky屏障高度(φB)的温度依赖性弱依赖于β -GA -GA 2 O 3 SBD的稳定电特性。应力电流密度 - 电压(J-V)和即时测量结果揭示了在恶劣的低温条件下可靠的动态性能。通过深层瞬态光谱法(电子陷阱)与低频噪声光谱中的动态性能不稳定性和Lorentzian驼峰有关,在低频噪声光谱中被揭示了β-GA-GA 2 O 3 Epilayer。这项研究揭示了在极端温度环境中利用大型β -GA -GA 2 O 3 SBD的巨大潜力。
x cd x x fe 2 o 4(x = 0.00,0.01,0.01,0.03,0.05,0.07,0.09)由共同途径准备。准备后,样品在温度900°C下烧结6小时。不同的表征技术,例如XRD(X射线划分),FTIR(傅立叶转换 - 红外 - 光镜检查),UV-VIS。和IV-特征术用于探索掺杂元件(CD)对纳米粒子的电,结构和光学特性的影响。XRD数据证实了Fe2O3的第二阶段的材料的单相,平均晶体大小在38.09-45.15 nm的范围内。在8.4471Å到8.4763Å中发现的准备材料的平均晶格常数值。在FTIR数据中,在所有样本中都发现了一个突出的频段,在某些样品中,在400-4000cm-1的范围内发现了第二个频段。IV观察性揭示了DC抗药性对温度的依赖性以及在0.1365到0.4332 EV/1000K的范围内的活化能值(∆𝐸𝐸)的依赖性。紫外线。分析证实了平均波长286 nm的所有样品的吸收峰。在此波长吸收下,所有样品的吸收范围为2.8722-3.2956(A.U)。CD浓度负责减少饱和磁性和损耗的降低。由于合适的特性,这些材料在录制媒体,高频应用和电子工程等许多分支等不同领域都有用。(2024年10月16日收到; 2024年12月11日接受)关键词:纳米结构,共凝结法,XRD,晶体大小,电阻率,激活能量1.引言尖晶石铁氧体是一类带有通用式AB 2 O 4的磁性材料,其中A和B代表不同的金属阳离子,O是氧。它们具有称为尖晶石结构的立方晶体结构,以矿物尖晶石的名字命名。尖晶石铁氧体表现出磁性,电气和结构特性的组合,使其在广泛的应用中有用,包括磁性存储,变压器,电感器和生物医学设备[1]。
在室温下频率1 Hz至10 MHz的阻抗光谱研究了铁(III)氧化物(III)(Fe 2 O 3)的电性能。扫描电子显微镜(SEM)和拉曼光谱已完成直径30-40 nm的铁(III)氧化物纳米库。通过(SEM)告知相同的颗粒和直径为30-40 nm的氧化铁(III)氧化物(Fe 2 O 3)的形态分析。另外,拉曼移位偏差显示出可靠的峰值,在≈143、289、498和629 cm -1的铁(III)氧化物(Fe 2 O 3)纳米杆菌。已经检查了铁(III)氧化物(Fe 2 O 3)的电气研究,以获得电参数(主要是介电介电常数,损失,电导率,损失,障碍,障碍和入学)的依赖性。由于颗粒直径的显着变化,导电率对频率的极大依赖性。计算出铁(III)氧化物(Fe 2 O 3)的电参数对频率具有很大的依赖性。
在这个全球化时代,社会的需求随着技术进步而继续增加。技术越复杂,对电力和能源存储的需求就越高。当今广泛使用的储能介质是锂电池。但是,由于锂电池的价格很高,因此克服锂电池高价的解决方案是用碳基材料(例如氧化石墨烯)代替锂电池电极。氧化石墨烯可以由生物量废物制成,其中之一是玉米棒垃圾。是使用修改后的鹰嘴豆法合成的,并与Fe 3 O 4纳米颗粒合成,该纳米颗粒由三种组成变化组成,即20%:80%; 30%:70%;和40%:60%。fe 3 O 4 /使用LCR计对氧化石墨烯纳米复合材料进行表征。使用LCR计的表征数据结果获得了每次比较Fe 3 O 4 /氧化石墨烯氧化物纳米复合材料的电阻率值,即1.65 x 105Ω.m,1.25 x 105Ω.m和5.85 x 104Ω.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.Fe 3 O 4/氧化石墨烯纳米复合材料的电导率值分别为6.09 x 10 -6 s/m,8.07 x 10 -5 s/m和1.72 x 10 -5 s/m。Fe 3 O 4 /氧化石墨烯纳米复合材料的电容值分别为1.96 x 10 -7 F,2.55 x 10 -7 F和4.30 x 10 -7 f。在20%的比例中发现了Fe 3 O 4 /石墨烯氧化物纳米复合材料的最大电阻率值:80%组成变化,Fe 3 O 4 /氧化石墨烯氧化物纳米复合材料的电导率和电容值的比例为40%:60%组成的比率。随着Fe 3 O 4组成的增加,电导率和电导值增加,但电阻率值降低。
研究了五苯薄膜在氧化锡(ITO)涂层玻璃上的物理和结构特性。使用20、30和60分钟的沉积时间的热蒸发方法沉积了五苯薄膜。现场发射扫描电子显微镜(FESEM)图像显示,膜厚度随沉积时间的增加而增加,在60分钟时出现了散装相位层。通过五射线衍射(XRD)模式证明了与15.5Å晶格间距相对应的薄膜相位的存在,其沉积时间为20和30分钟。同时,在沉积时间为60分钟,晶格间距为14.5Å,在五苯甲酸膜中验证了散装相的存在。原子力显微镜(AFM)的五苯甲烷膜结晶度的图像显示,沉积在Ito涂层玻璃上的五苯甲烯膜表现出具有模块化晶粒的相似岛屿的形成,从而产生了细晶体结构。从电流 - 电压(I-V)和电流密度 - 电压(J-V)特性中,五苯甲烯薄膜是欧姆的,并且随着五苯苯乙烯的厚度的降低而增加。五苯甲烯膜在透明底物上的宽带和窄带光电设备的发展中显示出潜力。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
石墨烯及其衍生物表现出有趣的特性(机械性能,电导和热导电性)。将其纳入聚合物矩阵时,在Elec Tronics,Medicine,Transportation等领域中可能进行了许多应用。本综述的目的是突出石墨烯如何影响聚合物纳米复合材料的电性能。第一部分解释了石墨烯的特殊结构,石墨烯是合成石墨烯的主要方法以及对电导率的影响。在第一部分中,还解释了石墨烯血小板的方向和比对如何影响单相聚合物纳米复合材料的渗透阈值或电导率。最后,在第一部分中,我们通过对石墨烯上的化学处理来提高对电性能增强的一些概括。本综述的第二部分的目的是显示将石墨烯掺入不混溶的聚合物对微结构和电气性能的影响。,我们专注于选择性定位纳米颗粒的概念:如何预测石墨烯的定位以及如何通过化学和动力学因素来量身定制定位。根据73个出版物的数据绘制了几个图,以表现出基于石墨烯的聚合物混合纳米复合材料的不同参数对电导率(S.cm -1)的影响。最后,本综述的最后一部分专门用于基于石墨烯的聚合物混合纳米复合材料的电气应用。