有关电磁兼容性(EMC)的重要信息,由Omron Healthcare Co.,Ltd。制造的血压监测器符合IEC 60601-1-1-2:2014+A1:2020电磁兼容性(EMC)标准。然而,需要观察到特殊的预防措施:•使用Omron指定或提供的配件和电缆的使用可能会导致监测器的电磁发射或降低电磁免疫,并导致不当操作。•在测量过程中,应避免使用与其他设备相邻或堆叠的监视器,因为它可能导致操作不当。如果有必要使用,则应观察到监视器和其他设备以验证它们正常运行。•在测量过程中,便携式RF通信设备(包括外围设备,例如天线电缆和外部天线),不得靠近监视器的任何部分,包括OMRON指定的电缆。否则,可能会导致监视器性能的退化。
本文件提供有关 PG&E 绿色电表适配器 (GMA) 计划的信息,该计划允许安装电表插座适配器,该适配器将直接接受来自住宅客户的光伏 (PV) 太阳能发电系统的有线连接。适配器安装在 PG&E 电表和配电盘中的电表插座之间。通过此适配器,太阳能系统连接到 PG&E 电表的负载侧和客户主断路器的供电侧。
RS232-MDB (PC2MDB) 和 MDB-USB 均用于将 PC 或任何其他 RS232 设备连接到 MDB 接口自动售货机。Pi2MDB 用于将 Raspberry pi 板连接到自动售货机。并且可以通过 RS232、USB 设备或 Raspberry pi 轻松与 MDB 接口自动售货机集成。这些适配器将自动回复 VMC Poll 命令,因此用户无需考虑 Poll 命令。除轮询命令之外,来自 VMC 的任何数据都将被重定向到 RS232 端口。此外,这些 MDB 适配器将处理与 VMC 的所有开机或复位数据通信。如果您想将任何数据将 HEX 数据发送到 VMC,只需与校验和一起发送到适配器盒,然后适配器盒将在 VMC 轮询请求期间发送到 VMC。因此,用户只需要在 PC 软件开发期间熟悉与 VMC 的自动售货会话。并且用户应该仔细阅读 MDB 协议以完成测试和开发。
高级计算中心(C-DAC)的开发中心邀请了印度公司从C-DAC转移技术(TOT)的“兴趣表达”(EOI),并以非专属的方式制造,市场,出售和部署C-V2X硬件适配器,用于交通信号控制器。通过此EOI,由M/S技术促进中心,CDAC,Thiruvananthapuram邀请了密封的H1 BID,来自涉及的著名公司的Thiruvananthapuram,参与了制造,安装和通过技术转移(TOT)来制造,安装和维护交通信号控制器。以下产品由C-DAC开发,由Tihan(技术创新枢纽)的资金(自动导航中心)开发,可供行业转让技术(TOT),以便为各种客户端项目制造,市场和实施。
摘要随着对高功率密度的需求不断增长,并且为了满足极端的工作条件,研究集中在涉及低温温度下电力电子设备的性能上。本文的目的是审查功率半导体设备,被动组件,栅极驱动器,传感器,最终在低温温度下的电力电子转换器的性能。通过比较半导体材料的物理特性和商业功率半导体设备的电性能,碳化硅开关由于在低温温度下的抗性和切换时间增加而显示出明显的缺点。相反,当温度降低时,硅和氮化壳设备的性能提高了。功率半导体设备的性能上限可能会受到门驱动器的影响,与室温相比,商业替代方案在低温温度下表现出恶化的性能。此外,在低温环境中的电压和当前意义的选项是合理的。基于上述各种组件的低温性能,本文以概述了已发表的转换器的概述,这些转换器在低温环境中进行了部分或全面测试。
将电动流动性引入运输部门已与缓解环境问题有关。尤其是插电电池电动汽车(EV)一直是支持完全过渡到电动移动性的主要技术。从电网的角度来看,EV不仅代表了新的负载,而且由于需要预测电池充电的时间表和持续时间,充电站的位置以及必要的能量量,因此带来了一系列新的挑战。这些方面从从电网接收能量的车辆的角度(网格到车辆,G2V)非常相关;但是,由于转移到电池的能量不使用瞬时,例如在常见负载中,因此可以将EV中的存储能量用于其他目的,例如返回到电网(车辆到网格,V2G)。此外,在这两种操作模式下,必须确保高质量的功率,甚至具有现代智能电网。为了确保G2V和V2G操作模式具有高质量的功率,需要具有双向电源转换器的功率电子系统和可振奋的控制算法。在这种情况下,本社论中介绍了一套用于电动电动电动电池充电器的最新和相关的双向电源转换器,包括车载和外板结构。插件电动汽车(EV)电池充电需要使用电力电子转换器,并且在车辆到车辆(G2V)和车辆对电网(V2G)模式中都可以运行,对于确保将可促进的集成到智能电网中。在功率网格界面中,AC-DC主动电源转换器用于确保用正弦电流和单一功率因数(即具有高质量功率)运行。在EV电池界面中,DC-DC电源转换器用于确保用受控的恒定电流和恒定电压进行操作。本编辑涵盖了有关电动电动电池充电器的双向电源转换器的最新关键论文充电器及其各自的技术,以及支持直接车辆到车辆操作模式的双向EV充电器的可能性。[1]中提供了涵盖与双向车载电动汽车充电器相关的广泛主题的评论。更具体地,本文介绍了可能的体系结构和功率转换器的配置的当前状态,智能操作模式,以功能网格内的有利界面,最相关的行业标准,最相关的行业标准以及某些组件技术的主要现代化进步以及某些可用的产品的主要现代化。在单阶段和双阶段结构的角度提出了关于双向板上EV充电器的潜在拓扑的细致摘要。还讨论了电力电子拓扑的未来趋势以及包括宽带设备和无线充电系统在内的主要挑战和机遇。
可以为 2、3 和 4 串锂离子电池选择恒定输出电压,温度精度为 0.5%。它还可以在 4.2V + 5%/cell 和 4.2V - 5%/cell 之间进行编程,以优化电池容量。当同时为负载和电池充电器供电时,交流适配器的输入电流限制可编程至 3% 以内,以避免交流适配器过载,并允许系统高效利用可用的适配器电源进行充电。它还具有广泛的可编程充电电流。ISL6251、ISL6251A 提供的输出用于监控从交流适配器吸取的电流,并监控交流适配器的存在。ISL6251、ISL6251A 自动从调节电流模式转换为调节电压模式。
1。根据电池充电器测试的单位能量消耗,使用USB-C型USB型电源适配器进行USB型电源适配器测试。2。EM45 RFID设备,使用室外浏览器密集型轮廓和5000 mAh电池。3。从第一个日期可以出售的救生员和Zebra Onecare支持6年。4。使用5000 mAh电池和USB快速充电器向EM45 RFID企业手机充电从0%到90%。5。斑马的所有电子产品都可能在IEC 62474危险物质清单上包含痕量的化学物质。
概述 GM50301 是一款 2.5GHz 、 10 路输出差分扇出缓冲 器,用于高频、低抖动时钟 / 数据分配和电平转换。输 入时钟可以从两个通用输入或一个晶体输入中选择。 所选定的输入时钟被分配到三组输出,两组包含 5 个 差分的输出和 1 个 LVCMOS 输出。两个差分输出 组均可被独立配置为 LVPECL 、 LVDS 或 HCSL 驱 动器,或者被禁用。 LVCMOS 输出具有用于在启用 或禁用时实现无短脉冲运行的同步使能输入。 GM50301 采用一个 3.3V 内核电源和 3 个独立的 3.3V 或 2.5V 输出电源供电。 GM50301 具有高性能、高功效而且用途广泛,使其 成为替代固定输出缓冲器器件的理想选择,同时增加 系统中的时序裕度。 GM50301 在内核和输出电源域之间没有电源时序要 求。 功能框图
摘要。预先训练的视觉模型(VLMS)的出色概括能力使下游零镜头任务的微调VLM是流行的选择。尽管在基础类的专业性中取得了令人鼓舞的表现,但大多数现有的微调方法都遭受了新颖类的特征混乱,导致不满意的可转移性。为了解决这个问题,我们提出了一种称为基于及时的变分适配器(PVA)的分裂和争议方法,该方法通过分开基础和新样本来明确减少预测偏差。指定,我们设计了两个具有可学习的文本令牌的变异适配器,以使共享潜在空间中每种模态的潜在表示。一旦受过训练,我们就可以使用潜在特征的相似性度量,即将混乱任务转换为两个独立的样本(一个用于基本类别,另一个用于新颖的类别)。此外,为了提高新颖类的可传递性,我们通过残留连接进一步完善了具有全局特征的学习适配器的输出特征。我们对广义零射门学习和交叉传输的学习进行了广泛的实验,以证明我们的方法的优势,并在四个流行的基准上建立新的最先进的方法。