摘要:在环境污染日益严重的情况下,为推动绿色能源的研究,介电陶瓷储能材料正受到广泛研究,其具有充放电循环极快、耐用性高的优点,在新能源汽车、脉冲电源等方面有广阔的用途。但普通介电陶瓷铁电材料储能密度较低,因此,本文以BaTiO 3 (BT)为基础,划分出8个组分,通过传统固相烧结法,将AB位置替换为不同比例的各类元素,以提高其储能密度,提高BT基铁电材料的储能效率。本文研究了掺杂样品的XRD、Raman、铁电、介电、阻抗测试结果,确定了最佳组分。通过Bi3+、Mg2+、Zn2+、Ta5+、Nb5+五种元素掺入制备了(1-x)BT-xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3系列陶瓷。随着掺杂量x的增加,电滞回线变细,饱和极化强度与剩余极化强度下降,储能密度先上升后下降。x=0.08以后的介电特性呈现平缓的介电峰,说明已经形成了铁电弛豫。最佳组分x=0.12的储能密度和效率分别达到了1.75J/cm3和75%,居里温度约为-20◦C,具有在室温下使用的潜力。
研究DNA寡核苷酸性能和寻找新结构识别方法是现代科学最重要的任务。相信,当人类基因组测序的成本变得足够低以实施广泛实施时,将实施个性化的医学概念[1,2]。在这种情况下,大多数现代遗传数据分析方法基于基因组测序,进而取决于检测每个核苷酸寡核苷酸增加的技术方法[1,2]。但是,应该注意的是,测序是用于寡核苷酸鉴定和分析的多核苷酸技术,而寡核苷酸序列的性能可以整体鉴定[3,4]。为此,我们需要研究寡核苷酸分子的性能,其中可能包括DNA的介电和磁性。在此之前表明,基于实验电导率数据的比较[1],核苷酸组合和寡核苷酸的长度在这些生物分子的介电性能形成中起着基本作用,因此,与1个寡核苷酸 - 1个相关的电势通道的电气序列相关的序列,从而研究了con- sns con- con- con- con- con- con- con- con- con- con- con- con- con- con- con- - 生物分子。寡核苷酸应用于SNS表面,反过来促进了总电容和电感,从而可以依靠伏特 - 安培特征研究中识别和确定其介电常数。这项研究的重点是这个问题 - 它没有声称要进行完整的寡核苷酸测序,但可以提供有关但是,由于电特性与磁性特性相互作用,因此有趣的是,是否可以使用其磁性特性通过非接触式方法研究寡核苷酸。
在XXI世纪初发现石墨烯并研究了其有希望的性质[1] [1]逐渐出现,并且仍然相关[2,3]对研究二维(2D)材料,尤其是分层金属辣椒素[4,5]的兴趣。层状金属chalco-天鹅是有前途的材料,可用于微电子,光子学和光伏的材料,因为它们具有半导体,金属,介电特性和拓扑绝缘剂的性能[6]。金属硫化剂的分子层的接近1 nm厚度以及它们之间存在弱的范德华键的存在提供了高机械柔韧性和对变形的抗性,从而产生了在柔性电子中的使用潜力[7,8]。由于物理特性的多样性,可以将分层的金属硫化剂用于各种应用,例如。 g。,MOS 2,BI 2 TE 3和2 SE 3中具有紫外线的高电磁发射吸附系数至接近红外范围[9]。结果,基于金属辣椒剂的范德华异质结构具有在功能设备的设计中使用其电子和光电特性的巨大潜力[10]。在2 SE 3中层层层次,最杰出的代表之一是在其基础上创建太阳能照片,光电探测器和存储设备的2 se 3 [6,11,12]。例如,最近在2 SE 3中至少有八个阶段已经在实验中找到并在理论上进行了预测,而不是许多金属辣椒剂,尤其是在2 SE 3中,其特征是存在具有相同化学计量的多态性修饰(相),但具有不同的结构和电子特性。
实施5G毫米波(MM-WAVE)无线网络需要重新设计RF前端组件(例如天线,过滤器和放大器),以便它们可以比前几代更高的频率操作[1]。这些设备通常是使用介电底物材料和金属导体制造的,需要在新的频带上表征这些设备。5G应用的介电常数和低损失的材料[2]是可取的。较低的介电构造可以通过基板更快地信号传播,从而允许更高的数据速率和较低的延迟。此外,低损耗切线有助于补偿MM波频率上本质上较高的衰减,从而确保通过设备可接受的传播损失[3],[4]。然而,材料的介电特性表现出由固有的松弛机制引起的频率依赖性。这些原子尺度过程会导致跨电磁频谱的共振峰和分散效应。在固体材料中,分子偶极子的偶极弛豫倾向于在MHz频率中发生,而在THZ区域中发现了晶格离子的振动共振[5],[6]。与5G设备相关的GHz范围中的介电行为位于中间区域,该区域可能分别受到MHz和THz频率的偶极和离子弛豫的尾巴的影响。因此,准确的宽带特征对于完全捕获这些基本物理过程引起的介电特性的频率变化至关重要。仅测量低频响应可能会提供材料适合5G应用的不完整图片。但是,已发表的研究有限
抽象的慢性阻塞性肺疾病(COPD)是一种威胁生命的肺部疾病,是全球发病率和死亡率的主要原因。尽管尚未找到治疗疗法,但对反映疾病进展的生物标志物的永久监测对于有效管理COPD起着关键作用。对唾液等呼吸道流体的准确检查是一种有前途的疾病方法,可以预测其即将到来的疾病(POC)环境中的加剧。但是,对患者人口统计和医疗参数的同时考虑对于实现准确的结果是必要的。因此,机器学习(ML)工具可以在分析患者数据并为识别POC环境中识别COPD的全面结果中发挥重要作用。因此,这项研究工作的目的是实施ML工具,从表征COPD患者和健康对照的唾液样本及其人口统计信息中获取的数据以及POC识别该疾病的人口信息。为此,使用了介电常数生物传感器来表征唾液样品的介电特性,随后将ML工具应用于获得的数据进行分类。XGBoost梯度增强算法的高分类准确性和敏感性分别为91.25%和100%,使其成为COPD评估的有前途的模型。将来将该模型整合到神经形态芯片上,将来可以在POC中对COPD进行实时评估,低成本,低能消耗和高患者隐私。此外,在接近患者设置中对COPD的持续监测将使疾病加剧更好地治疗。
EURAMET 的电磁技术委员会 (TC-EM) 负责与电磁计量相关的科学、技术和组织问题。TC-EM 的发展领域包括:- 电磁学的 SI 单位的实现;- 电磁常数的测定和基本测试;- 量子电工计量;- 直流电压、电阻和电流;- 交流电阻、电容、电感;- 交流电压、电流、功率和能量;电能质量;- 高压和电流;- 其他直流和低频测量,包括电荷、相角、电流和电压波形,- 电场、磁场和电磁场;- 射频和微波测量;- THz 计量;- 材料的电磁特性,包括电导率、介电特性和磁性;- 纳米级电磁测量。 TC-EM 负责执行 EURAMET 作为区域计量组织 (RMO) 为履行国际计量委员会 (CIPM-MRA) 相互承认协议所要求的活动,包括管理校准和测量能力、组织比对、维护现场比对指南。TC-EM 参与制定和执行 EURAMET 战略和 EURAMET 计量研究计划(目前为 EMRP 和 EMPIR)。TC-EM 每年组织一次联系人会议,以及其他专门讨论特定事项的会议(例如,参与计量研究计划)。TC-EM 主席通过年度报告向 EURAMET 汇报,并向 EURAMET TCC 和大会汇报参与情况。TC-EM 主席和成员资格受 EURAMET 议事规则 [现行版本 G-PRM-ROP-010,版本 v4.0 2016 年 5 月 24 日,第 199 条] 的监管。九
摘要:我们提出了一个简单的过程,使用PEDOT使用PEDOT:PSS(Poly(3,4-Eth Ylenedioxythiophene):Poly(styrenenesulfonate))/非氧化的石墨烯以涂上聚酰胺或聚氨酯针织织物,以便于智能医疗保健。电导性纺织品。随后,根据PEDOT的比率:PSS/非氧化的石墨烯复合材料(1.3 wt%:1.0 wt%:1.3 wt%; 1.3 wt%:0.6 wt%:0.6 wt%; 1.3 wt%; 1.3 wt%; 1.3 wt%:0.3 wt%:0.3 wt%)和应用程序数量(一次,或跨度)(又一次)。通过Fe-Sem观察到标本的表面形态。此外,使用FTIR和拉曼光谱法对其化学结构进行了表征。通过四点接触进行的样品的电特性测量(板电阻)显示了对非氧化石墨烯的电导率增加以及复合系统中的应用数量。此外,对织物的机械性能的测试表明,PEDOT:PSS/非氧化石墨烯处理的织物表现出比未经处理的样品的伸长率更低,恢复原始长度的能力更低。此外,通过执行拉伸操作1,000次,拉伸强度为20%,测试了PEDOT:PSS/非氧化石墨烯聚酰胺/聚氨酯针织织物;因此,传感器保持恒定电阻而没有明显的损坏。这表明PEDOT:PSS/非氧化的石墨烯应变传感器具有足够的耐用性和电导率,可以用作智能可穿戴设备。
抽象的二维(2d)/Quasi-2d有机无机卤化物钙钛矿被视为自然形成的多个量子孔,其由长的有机链分离出来的无机层,这些层被长的有机链分离出来,这些链条表现出分层结构,大激子结合能,强大的非线性光学效应,强烈的非线性光学效应,可调节的频带通过层次或化学构图,并改善了层次或化学的构图,改善了构图,并改善了稳定的构图,并改善了稳定性。长长的有机链的广泛选择endows 2d/quasi-2d perovskites具有可调电子偶联强度,手性或铁电特性。尤其是,2D/Quasi-2d Perovskites的分层性质使我们能够将它们去角质以与其他材料集成以形成异质结构,这是光电设备的基本结构单元,这将极大地扩展了2D/Quasi-2d perovskites的多样性的功能。在本文中,回顾了2D/Quasi-2d钙钛矿的最新成就。首先,引入了2D/Quasi-2d Perovskites的结构和物理性质。然后,我们讨论了基于2D/Quasi-2d钙钛矿的异质结构的构建和表征,并突出了构造的异质结构的显着光学特性。此外,2D/Quasi-2d钙钛矿的潜在应用基于光伏设备,发光设备,光电轨道/光传递器和Valleytronic设备是
EURAMET 的电磁技术委员会 (TC-EM) 负责电磁计量相关的科学、技术和组织问题。TC-EM 的发展领域包括: - 电磁学 SI 单位的实现; - 电磁常数的确定和基本测试; - 量子电计量; - 直流电压、电阻和电流; - 交流电阻、电容、电感; - 交流电压、电流、功率和能量;电能质量; - 高压和电流; - 其他直流和低频测量,包括电荷、相角、电流和电压波形, - 电场、磁场和电磁场; - 射频和微波测量; - THz 计量; - 材料的电磁特性,包括电导率、介电特性和磁性; - 纳米级的电磁测量。TC-EM 负责执行 EURAMET 作为区域计量组织 (RMO) 为履行国际计量委员会 (CIPM-MRA) 相互承认协议所要求的活动,包括管理校准和测量能力、组织比对、维护现场比对指南。TC-EM 参与制定和执行 EURAMET 战略和 EURAMET 计量研究计划(目前为 EMRP 和 EMPIR)。TC-EM 每年组织一次联系人会议,以及其他专门讨论具体事项的会议(例如,参与计量研究计划)。TC-EM 主席通过年度报告向 EURAMET 汇报,并向 EURAMET TCC 和大会汇报参与情况。TC-EM 的主席和成员资格受 EURAMET 议事规则 [现行版本 G-PRM-ROP-010,版本 v4.0 2016 年 5 月 24 日,第IX]
何斌的主要研究兴趣包括电生理神经成像、脑机接口和神经调节。他在系统层面上为神经工程领域做出了开创性的原创贡献,旨在加深我们对大脑的理解,并通过工程创新来管理神经系统疾病。他的创新有助于将脑电图 (EEG) 从一维传感技术转变为现代三维动态功能性脑成像模式,用于映射和成像时空脑活动和功能连接。这项工作对更好地了解大脑功能和功能障碍以及降低医疗成本具有重大影响。他在基于 EEG 的脑机接口方面的工作取得了重大进展。他的团队是第一个让人类驾驶无人机的人,也是第一个控制机械臂在三维空间中连续移动、伸手和抓握物体的人,仅使用从非侵入性脑电图中解码的“思想”。这项工作大大提高了非侵入性脑机接口的功能和应用。他的研究小组还创新了具有高空间分辨率的组织电特性磁声成像和经颅聚焦超声神经调节,以空间精度和深脑穿透对中枢神经系统信息进行编码。他的研究对神经成像、神经接口和神经调节在治疗神经系统疾病方面具有直接影响——神经系统疾病是导致残疾的主要原因和第二大死亡原因。