Milano giuseppemaria.paterno@polimi.t Engineering Living Matter的目标是修改生物学属性以利用生物的独特能力。一种普遍的方法涉及通过合成生物学技术或功能材料对特定刺激有反应的生物,旨在调节细胞和生物的电生理学和活性。这种方法也适用于细菌,尽管它们的电生理学,生物电性,生物能学和行为之间的连接直到最近才开始阐明。最近的研究表明,细菌膜电位是动态的,而不是静态参数,并且起着重要的生物电信号传导作用。这种交流范式控制着它们在微生物群落中的新陈代谢,行为和功能。鉴于膜电位动力学介导了这种语言,因此操纵此参数代表了细菌工程的有前途且有趣的策略。在这里,我表明可以通过基于材料的方法来实现细菌膜电位的精确光学调节。具体而言,我们发现在膜位置的异构化反应在生物模拟机制内诱导电势的超极化或去极化,具体取决于激发态失活途径,从而重现了视网膜的初始命运。这可以触发神经元样的生物电信号传导,并可以突出以前未表征的离子通道在细菌电生理学中的作用。最后,我还展示了有关抗生素摄取的光调节的观点,以及在财团和多种种族生态系统中细菌运动和组装行为的光控制
摘要 - 用于电脑刺激的可植入设备中的最新开发包括传感和嵌入式计算能力,可以实现自适应刺激策略。应用包括由病理性脑活动和内源性节奏(例如昼夜节律)触发的刺激。我们开发并测试了一个系统,该系统将电气刺激和感应植入器设备与嵌入式计算集成在一起,并使用带有商业电子设备,智能手机和智能手表的分布式系统进行患者注释,广泛的行为测试以及自然环境中受试者的自适应刺激。该系统可以与大脑刺激装置进行精确的时间同步,并与连续流媒体电生理学与患者报告同步的连续流电生理学的自动分析。该系统利用设备与生活在自然环境中的癫痫患者之间的实时双向接口。
UBC 心力衰竭和心脏电生理学副教授 Charles Kerr 博士 心律管理杰出学者 UBC 心脏病学系研究主任 心脏服务质量与研究医学负责人 BC 医生 VCH 区域心力衰竭项目负责人
通过许多研究人员的精确实验研究,电生理学的研究取得了重大进展。该领域也通过将这些实验与基于电磁理论,电化学和其他基本概念的数学描述相结合来提出。本教科书提供了电生理学的定量介绍,首先是第1章中必要数学的摘要。第二章提供了导电媒体中电场和当前流量的简洁概述,从物理科学和工程原理中借鉴了生物学应用。随后的六章构成了本文的核心材料。第3章介绍了如何在膜之间存在电压和电流,以及如何使用Nernst – Planck方程进行评估。第4章讨论了膜通道,这对于细胞兴奋性至关重要,而第5章检查了产生动作电位的膜电压变化的时间过程。第6章涵盖了动作电位向下纤维的传播,并且在第7章中对心脏起搏器中使用的人工刺激的反应进行了处理。最后,第8章描述了这些活性过程在周围细胞外空间中产生的电压和电流。以前的版本因其对电生理主题的全面报道而受到赞扬,包括细胞膜的电性能,动作电位,电缆理论,神经肌肉连接,细胞外场和心脏电生理学。**传记** Robert Plonsey是生物医学工程专家,目前是杜克大学名誉教授。他拥有著名机构的多个学位,包括加利福尼亚大学(1955年)的电气工程博士学位和斯洛伐克科学学院的技术科学博士(1995年)。在他的整个职业生涯中,他曾在凯斯西部储备大学(1976-1980)和杜克大学(1968-1983)的教授担任生物医学工程主席。**奖项和赞誉** Plonsey对生物医学工程的贡献已通过许多奖项得到认可: *美国科学进步协会会员 * William Morlock Award * William Morlock Award(1979年) *百年纪念奖章(1984)(1984年)在IEEE IEEE Ingineering获得IEEE MEDIC SORICED的IEEE ENGINEERIG (1997年)获得了国际生理与工程医学科学联盟 * Theo Pilkington杰出教育家奖(2005年) *杰出服务奖(生物医学工程科学,2004年)**当前工作** Roger C. Barr是杜克大学生物医学工程和培养科副教授。他曾担任生物医学工程系和医学与生物学协会IEEE工程副总裁兼总裁。Barr获得了杜克大学学者奖(1991年),并撰写了100多个有关生物电论的研究论文。**文本简介**提供的文本是电生理学的简介,重点是定量方法。本书涵盖了电场的各个方面和在生物环境中的电流流动,包括膜电压,动作电位,传播,人工刺激反应以及细胞外电压/电流产生。随后的章节探讨了心脏和神经电生理学,以及膜生物物理学的最新发展。电生理学领域通过许多研究人员进行的各种实验研究的结合,从而取得了重大进步。此外,准确的理论概念和数学描述的发展统一了许多实验观察,为应对各种电生理挑战提供了坚实的基础。此外,采用向量和矢量演算,大大简化了本书中介绍的几个主题的数学公式。本章深入研究向量和标量的基本面,以及代数操作,例如应用于向量的添加和乘法。它还对梯度和差异概念进行了深入的评论,因为它们经常遇到。
本文的目的是对广义特征组成(GED)提出理论和实用的介绍,这是用于降低尺寸和源源分离多通道信号处理中的强大而灵活的框架。在认知电生理学中,GED用于创建空间过滤器,以最大程度地提高研究人员规定的对比。例如,人们可能希望利用一个不同的来源具有不同的频率含量,或者来源在实验条件下的大小变化。GED快速易于计算,在模拟和真实数据中表现良好,并且易于适应各种特定的研究目标。本文以一种将GED联系在一起的方式介绍了GED,该方式将GED在电生理学中的众多个人出版物和应用联系在一起,并提供了可以测试和调整的样品MATLAB和PYTHON代码。在应用中经常出现的实际考虑和问题。
心率变异性 (HRV) 的测量和分析基于连续 NN 间隔之间的变化,自第一份指南发布(欧洲心脏病学会和北美起搏和电生理学会工作组,1996 年)以来,在过去 20 年里已成为一种既定程序。不仅记录技术取得了进步(更小、更便携、更精确的设备)(Koerber T 等人,2000 年),而且现在还可以通过小型胸带和脉搏监视系统测量 NN 间隔(Wallén 等人,2012 年)。技术发展降低了记录和分析的成本,并促进了门诊应用。HRV 在临床医学中也变得越来越重要,特别是作为既定的诊断程序的补充或监测进展。这需要对记录和分析 HRV 有基本的了解,可参考相关指南(欧洲心脏病学会和北美起搏和电生理学会工作组,1996 年;Sassi 等人,2015 年;Sammito 等人,2024 年)。
另一个挑战是案例选择:确保所选参与者具有适当的病理(目标),该病理(IP)旨在修改。临床诊断标准传统上是与此目标一起使用的,但是众所周知,这些标准在AD和PD等几种指示中具有明显的假阳性率,这些迹象可以稀释潜在的有效干预措施的治疗效果。3,4科学领域和调节剂正朝着使用病理异常的客观相关性迈进,包括生物流体(例如,PD中的血α-突触核蛋白)5,成像(例如,HD中的尾声)和电生理学(例如,尾声)和电生理学(例如MND中的肌电图)7生物标志物用于选择,富集和分层。额外的好处是,这些工具不仅有助于获得提出目标目标的可能性增加的研究人群,而且还可以确保一项更均匀的研究人群优化小型早期发展研究的统计能力。
心脏电生理学的生物物理详细数学建模通常是计算的,例如,在解决各种患者病理状况的概率时,都需要计算。此外,仍然很难减少通常嘈杂的理想数学模型和临床测量的输出之间的差异。在这项工作中,我们提出了一个基于物理的快速深度学习框架,以从数据中学习复杂的心脏电生理学动态。这个新颖的框架有两个组件,分别将动态分解为物理术语和数据驱动的项。这种构建使框架可以从不同复杂性的数据中学习。在Sil-ICO数据中,我们证明了该框架可以重现传输电位的复杂动力学,即使在数据中存在噪声的情况下也是如此。这种基于物理学的数据驱动方法可以通过为预测提供可靠的生物物理工具来改善心脏电生理建模。
阳极直流电刺激对反复创伤性脑损伤患者的作用机制 - 使用电生理学、磁共振波谱学和功能性 MRI 的多模态分析” → DFG (Charité)(德国研究基金会 / Charité - Universitätsmedizin Berlin)研究负责人项目:F. Schubert(8.1 医学测量技术)
•具有适当的荧光标记物的电压门控钙通道CACNA1C和CACNA1B同工型的瞬时转染稳定或瞬时表达VGCC和22亚基,用于形成功能通道所必需的SHEK293细胞。•表现出感兴趣变化的同工型将作为可诱导的稳定转染细胞系产生,以进行进一步的实验。•体外电生理学(全细胞贴片夹记录)测量生物物理参数,包括电压敏感性,电导和激活/失活动力学。•使用接近连接测定和细胞表面生物素化来鉴定新型相互作用蛋白,以测定离子通道运输到膜上。•使用包括L型钙通道的选择性阻断剂在内的一系列药物进行了VGCC蛋白质成型的药理学的解剖。•分析描述性数据,数字图像和遗传数据的电生理学,蛋白质生物化学和药理学数据集•数据交流和写作研究论文手稿。