内燃机氢气喷射系统(美国) 电脉冲发生器(美国) 氢气燃烧器(美国) 氢气喷射系统(CDA) 内燃机氢气喷射器(CDA) 燃气电氢气发生器(CDA) 氢气/空气和不可燃气体混合燃烧系统(CDA) 燃气电氢气发生器(美国) 可控氢气火焰(CDA) 导光透镜(美国) 氢气发生器系统(美国) 太阳能加热系统(美国) 以脉冲电压电势运行的谐振腔氢气发生器(CDA) 多级太阳能存储系统(美国) 电粒子发生器(CDA) 氢气燃烧器的启动/关闭(美国) 燃气发生器电压控制电路(美国) 从气体中生产热能的控制过程及其有用的设备(氢气裂解过程)(PeT) 生产燃料气体并增强从这种气体中释放热能的过程和设备(氢压裂工艺的电子接口)(共振作用)(美国)(WFC 项目 423 DA)可控氢气火焰(EPO)可控氢气火焰(JPO)内燃机氢气喷射系统(EPO)氢气喷射系统(JPO)燃料气体生产方法“电极化工艺”(美国)氢气发生器共振腔(}PO)利用氢气的内燃机氢气燃料和管理系统
内燃机氢气喷射系统(美国) 电脉冲发生器(美国) 氢气燃烧器(美国) 氢气喷射系统(CDA) 内燃机氢气喷射器(CDA) 燃气电氢气发生器(CDA) 氢气/空气和不可燃气体混合燃烧系统(CDA) 燃气电氢气发生器(美国) 可控氢气火焰(CDA) 导光透镜(美国) 氢气发生器系统(美国) 太阳能加热系统(美国) 以脉冲电压电势运行的谐振腔氢气发生器(CDA) 多级太阳能存储系统(美国) 电粒子发生器(CDA) 氢气燃烧器的启动/关闭(美国) 燃气发生器电压控制电路(美国) 从气体中生产热能的控制过程及其有用的设备(氢气裂解过程)(PeT) 生产燃料气体并增强从这种气体中释放热能的过程和设备(氢压裂工艺的电子接口)(共振作用)(美国)(WFC 项目 423 DA)可控氢气火焰(EPO)可控氢气火焰(JPO)内燃机氢气喷射系统(EPO)氢气喷射系统(JPO)燃料气体生产方法“电极化工艺”(美国)氢气发生器共振腔(}PO)利用氢气燃料的内燃机氢气燃料和管理系统(美国)
带有物联网的神经传感 助理教授 Ms.Varamahalakshmi.O 1、Hema R 2、Mrudula TS 3、Nishkala S 4、Thirumala Samhitha KM 5 工学学士 4 年级 印度 SJCIT 电信工程系 1 varu.o92@gmail.com、2 hemarajanna123@gmail.com、3 mrudulats58@gmail.com 4 nishkalas73488@gmail.com、5 tsamhitha30@gmail.com 摘要 随着技术的进步,与电器交互的方式也在不断进步。本文提出了一种脑机接口 (BCI),用于调节日常家用电器,从基于简单机械开关的电器控制到基于物联网的无线控制设施。该技术包括 EEG 设备,用于获取与大脑活动和通信协议相关的信号。将 BCI 和 IoT 相结合以实现“远程控制”是一项很有前途的新兴技术,它通过轻松访问、自动化和优化电视机、交流灯泡等家用电器,使家庭环境变得舒适。除此之外,通过云服务器实时监测大脑活动在教育和医疗领域发挥着重要作用,分别用于监测学生的注意力和注意力水平以及监测昏迷患者的大脑活动。[12][7][1] 关键词——脑机接口 (BCI)、物联网 (IoT)、脑电图 (EEG) I. 引言 根据调查,人脑由无限多个神经元相互连接组成。它们通过发送一些由电荷组成的电脉冲相互通信。这些电荷产生一定量的力来产生具有不同电势的电场。我们的头皮约为 (微伏)。该微电压可以被传感器和电极感应到。传感器或
上面讨论的所有大脑电路的必要条件是获得一致的,情感稳定的,不受压力的父母护理给予者。“人类的联系建立神经元连接。” (加州大学洛杉矶分校文化,大脑和发展中心的创始成员丹尼尔·西格尔博士。ii)。“对于婴儿和幼儿,依恋关系是在最大生长期间影响大脑发展的主要环境因素。。。依恋建立了人际关系,可以帮助未成熟的大脑使用父母大脑的成熟功能来组织自己的过程。” III(D. Siegel博士)“在此过程中的任何时候,您都有所有这些潜力,即好是坏刺激,可以进入那里并设置大脑的微观结构。” IV(美国国家心理健康研究所的生物精神病学会主管Robert Post博士)。“ [一个异常或贫困的饲养环境可以减少一千倍的平均突触数量(从导致电脉冲向另一种神经元的细胞体延伸的长延伸),持续增长并消除了数十亿美元的增长,如果不是每次大脑的几万亿个突触,并且导致了整个课程均超出了划分的群体互联网的保存,从而使整个课程均超出了划分。环境引起的缺陷包括降低预测后果或抑制无关紧要或不适当的,自我破坏性行为的能力,人类和其他动物在社会,情感,表达和感知功能的各个方面都表现出严重的干扰。” V(Rhawn Joseph博士,大脑研究人员)
面部麻痹(FP)深刻影响着人际关系和情感表达,需要精确的诊断和监测工具以进行最佳护理。但是,当前的肌电图(EMG)系统受其庞大的性质,复杂的设置和对熟练技术人员的依赖的限制。在这里,我们报告了一种创新的生物传感方法,该方法利用了PEDOT:PSS-SODIFIFED浮动微针电极阵列(P-FMNEA)来克服现有EMG设备的局限性。柔软的系统水平力学确保对面部曲线区域的出色构成,从而使靶向的肌肉合奏运动能够检测到面部麻痹评估。此外,我们的设备熟练地捕获了每个电脉冲,以响应神经外科手术过程中的实时直接神经刺激。通过服务器将EMG信号的无线运输到医疗设施中增加了对患者的后续评估数据的访问,促进了及时的治疗建议,并在典型的6个月后续过程中允许访问多个面部EMG数据集。此外,该设备的软机制可以减轻空间复杂性,减轻疼痛的问题,并最大程度地减少与传统针电极定位相关的软组织血肿。这种开创性的生物传感策略有可能通过提供有效的,用户友好且侵入性较低的EMG设备来改变FP管理。这项开创性的技术可以在FP管理和治疗干预中更明智的决策。
上面讨论的所有大脑电路的必要条件是获得一致的,情感稳定的,不受压力的父母护理给予者。“人类的联系建立神经元连接。” (加州大学洛杉矶分校文化,大脑和发展中心的创始成员丹尼尔·西格尔博士。ii)。“对于婴儿和幼儿,依恋关系是在最大生长期间影响大脑发展的主要环境因素。。。依恋建立了人际关系,可以帮助未成熟的大脑使用父母大脑的成熟功能来组织自己的过程。” III(D. Siegel博士)“在此过程中的任何时候,您都有所有这些潜力,即好是坏刺激,可以进入那里并设置大脑的微观结构。” IV(美国国家心理健康研究所的生物精神病学会主管Robert Post博士)。“ [一个异常或贫困的饲养环境可以减少一千倍的平均突触数量(从导致电脉冲向另一种神经元的细胞体延伸的长延伸),持续增长并消除了数十亿美元的增长,如果不是每次大脑的几万亿个突触,并且导致了整个课程均超出了划分的群体互联网的保存,从而使整个课程均超出了划分。环境引起的缺陷包括降低预测后果或抑制无关紧要或不适当的,自我破坏性行为的能力,人类和其他动物在社会,情感,表达和感知功能的各个方面都表现出严重的干扰。” V(Rhawn Joseph博士,大脑研究人员)
S3900表面肌电图(EMG)的描述神经生理或电诊断测试评估沿周围神经的电脉冲传导。当有细微的电动机或感觉缺陷需要进一步检查以进行明确诊断时,这些测试是对彻底的病史和体格检查的补充。此政策包括有关以下测试的信息:肌电图(EMG)衡量对电或神经刺激的肌肉反应。该测试用于评估单个神经和肌肉的功能,并在运动,人体工程学,康复,骨科,心理学和神经病学方面具有各种应用。存在两种主要类型的EMG类型:针EMG(NEMG)和表面EMG(SEMG)。SEMG是一种诊断技术,其中电极放在皮肤上,并用于测量响应电或神经刺激的基础肌肉的电活动。SEMG记录,也称为肌电图的SEMG记录可能有可能用于检测神经和/或肌肉功能的障碍。副脊髓EMG是一种用于评估背痛的表面EMG。基于SEMG的癫痫发作监测系统,例如SPEAC®系统(BrainSentinel®癫痫发作监测和警报系统)是一个非侵入性监测仪,它放置在二头肌肌肉上,以分析表面触发术(SEMG)信号,可能与广义强调(GTC)癫痫发作有关。系统提供了警报,以提醒护理人员可能的GTC癫痫发作。针肌电图需要通过皮肤插入针头,有助于确定肌肉无力是由控制肌肉,神经肌肉连接的神经中的损伤还是疾病引起的,还是肌肉本身。
什么是起搏器?起搏器是一种小型电子设备,植入于胸部皮下,用于维持适当的心率,通常用于防止心脏跳动过慢。大多数起搏器植入于左锁骨下方,但也可以植入于右锁骨下方,偶尔也可以植入于腹部。一般来说,起搏器由两部分组成:起搏器发电机(有时称为电池或罐)和一根或多根导线(称为导线)。发电机包含使起搏器工作的电池和计算机组件。导线是特殊的导线,一端连接到发电机,另一端植入于心脏内。小电脉冲从发电机传输并沿着导线传播,从而导致心脏收缩。起搏器可以植入一根、两根或三根导线。您接受的起搏器类型取决于您的临床诊断。为什么我需要起搏器?您曾经或现在有更大的心率减慢风险。这可能会导致您出现疲劳、头晕或呼吸急促等症状,在某些情况下,如果不及时治疗,可能会很危险。起搏器可以防止心率过慢,或者通过“填补空白”来帮助调节心律。双心室起搏器可帮助改善心力衰竭患者的症状。心力衰竭是指心脏的两个下腔不能同步跳动。需要安装起搏器的常见原因有:• 病态窦房结综合征(心脏自身的起搏器出现故障)• 心脏传导阻滞(上下腔之间断开)• 心房颤动(一种不规则的心律)• 心脏抑制性晕厥(由于支配心脏的神经过度活跃而失去意识)• 心力衰竭是指心脏的两个下腔不能同步跳动)
深脑刺激(DBS)通过将电脉冲传递到大脑的基底神经节(BG)区域来治疗由帕金森氏病(PD)引起的运动症状的巨大希望。但是,美国食品药品监督管理局(FDA)批准的DBS设备只能以固定幅度提供连续的DBS(CDB)刺激;这种效率低下的操作可降低设备的电池寿命,无法动态地适应活动,并且可能引起严重的副作用(例如步态障碍)。在这项工作中,我们引入了一个离线增强学习(RL)框架,允许使用过去的临床数据来训练RL政策以实时调整刺激幅度,目的是减少能源利用,同时保持相同的治疗水平(即,控制)功效为CDB。此外,临床原型要求在患者部署之前证明此类RL控制器的安全性和性能。因此,我们还引入了一种离线政策评估(OPE)方法,以在对患者进行部署之前使用历史数据估算RL政策的性能。我们对配备RC+S DBS系统的四名PD患者进行了评估,在每月临床就诊期间采用RL控制器,并通过症状严重程度评估了整体控制功效(即,Bradykinesia和Tremor),PD生物制造商的变化(即,本地现场电位)和患者评分。临床实验的结果表明,我们的基于RL的控制器保持与CDB相同的控制功效水平,但刺激能量显着降低。此外,OPE方法在准确估算和对RL控制器的预期回报方面有效。
摘要:电穿孔动物基因敲除系统技术(TAKE)是一种简单有效的方法,利用成簇的规律间隔短回文重复序列(CRISPR)/CRISPR 相关蛋白 9(Cas9)系统生成转基因小鼠。为了增强电穿孔在小鼠基因编辑中的多功能性,针对玻璃化冷冻小鼠胚胎优化了电条件,并将其应用于广泛使用的近交系(C57BL/6NCr、BALB/cCrSlc、FVB/NJcl 和 C3H/HeJJcl)的新鲜胚胎。电脉冲设置(穿孔脉冲:电压,150 V;脉冲宽度,1.0 ms;脉冲间隔,50 ms;脉冲数,+4;转移脉冲:电压,20 V;脉冲宽度,50 ms;脉冲间隔,50 ms;脉冲数,±5)对于玻璃化冷冻加温的小鼠胚胎是最佳的,其可以有效地将 gRNA/Cas9 复合物递送到受精卵中而无需透明带变薄过程并编辑目标位点。这些电条件在广泛使用的近交系小鼠中有效地产生了转基因小鼠。此外,使用间隙为 5 mm 的电极进行电穿孔可以在 5 分钟内引入超过 100 个胚胎,而无需特殊的预处理和复杂的技术技能,例如显微注射,并且在产生的后代中表现出较高的胚胎发育率和基因组编辑效率,从而快速高效地产生基因组编辑小鼠。本研究中使用的电条件用途广泛,可以更轻松高效地生成转基因小鼠,有助于了解人类疾病和基因功能。关键词:CRISPR/Cas9、电穿孔、冻融胚胎、基因组编辑