在具有直接循环极化发射的发光二极管中,实现高电发光的非对称因子和高外部量子效率同时在发光二极管中具有挑战性。在这里,我们表明,基于手性钙钛矿量子点,可以同时在发光二极管中同时实现高发光的不对称因子和高外部量子效率。特定的,手性的钙钛矿具有手性诱导的自旋选择性可以同时用作局部的辐射辐射推荐中心,用于自旋极化载体的循环极化载体,从而抑制了旋转的放松,从而抑制了旋转的旋转,并改善了旋转的旋转,并促进了旋转的旋转效果,并促进了旋转的旋转效果,旋转了旋转的效果,供应型旋转效果。属性,以便可以促进产生设备的授权电源。我们的设备同时表现出高电致发光的非对称因子(R:0.285和S:0.251)和高外部量子效率(R:16.8%和S:16%),证明了它们在构建高表现性手性光源方面的潜力。
基于此,作者进一步构建了窄带发射,高量子效率和低效率滚动特性的天蓝色OLED。值得注意的是,基于BCZBN-3B的OLED的最大外部量子效率为42.6%,为使用二进制发射层的OLED设备设定了新的效率记录。此外,在1000 cd m -2的亮度下,该设备仍保持30.5%的效率,显示效率较小。
摘要:iii-v半导体发光二极管(LED)是证明电致发冷却的有前途的候选人。但是,异常高的内部量子效率设计对于实现这一目标至关重要。可以防止基于GAAS的设备中统一内部量子效率的重要损失机制是周长侧壁的非辐射表面重组。为了解决此问题,提出了非常规的LED设计,其中从中央电流注入区到设备周边的距离延长了,同时保持恒定的前触点网格大小。这种方法有效地将周长移动到电流密度10 1-10 2 A/cm 2的电流密度以外的横向扩散。在P - I-N GAAS/INGAP双重杂结LED中,用不同尺寸和周长扩展制造的LED,通过将外周向接触距离从250μm扩展到250μm的前触点尺寸,可实现19%的外部量子效率。利用内部开发的光子动力学模型,估计内部量子效率的相对相对增加为5%。这些结果归因于由于较低的周边面积(p/a)比,周长重组的重组显着降低。但是,与通过增加LED的前触点网格大小来降低P/A比相反,目前的方法可以改进这些改进,而不会影响前触点网格下显微镜活性LED所需的最大电流密度。这些发现有助于在LED中进行电致发冷却的进步,并可能在其他专用的半导体设备中有用,在这些专用的半导体设备中,在外围重组是限制的。关键字:电致发冷却(ELC),微型LED(发光二极管),III-V半导体,电流扩散,周边重组,表面钝化
图1个极化子跳跃在WO 3中诱导的双波段吸收。A在不同时间间隔的GalvanoStatic电荷插入后WO 3膜的原位光学透射率。b,在450 nm(表示可见范围)和1100 nm(代表NIR范围)的WO 3膜的电荷能力的函数。c,od光谱是波长的函数,以及北极理论的吸收系数的理论计算。理论曲线已分解为下两个面板中的两个偏振子峰。d,在电荷插入过程中在不同时间的WO 3(W 4 F峰)膜的XPS光谱。e,d中XPS光谱得出的相应的W值的比例。XPS光谱和其他电荷插入状态的比例可在图中看到S6。f,C(A 1,A 2;左侧尺度)的两个峰的振幅显示为LI插入时间的函数,并将其与位点饱和理论获得的跳跃效率(H.E;右手尺度)相比。H.E.通过45分钟XPS的插值在D下降到零,从而获得了15和30分钟的点。
所有介电材料都具有电活性,即能够在施加的电场作用下改变其尺寸或形状。(Dang et al, 2012) 电活性聚合物 (EAP) 及其聚合物纳米复合材料由于其低模量、高应变能力、易于低成本加工和可定制的机电耦合特性,特别适用于从致动器、传感器到发电机等应用。通常,EAP 诱导的应变能力比刚性和易碎的电活性陶瓷高两个数量级。与形状记忆合金和聚合物相比,它们显示出更快的响应速度。(Yuan et al, 2019) 由于这些特性,EAP 可以与生物肌肉相媲美,并长期被称为“人造肌肉”。(Bar-Cohen, 2002) 社区甚至发布了一项挑战,要求开发一种由人造肌肉驱动的机械臂,以赢得与人类对手的腕力比赛。除了致动器之外,EAP 还显示出其在传感应用中的潜力,例如触觉传感、血压和脉搏率监测以及化学传感。(Wang 等人,2016 年)此外,EAP 甚至可以作为发电机中的关键活性材料。随着便携式电子设备(例如无线传感器和发射器)和无线微系统的功能不断增加,其能量需求也急剧增加。而电池的使用由于环境问题和有限的使用寿命而很麻烦,因此需要定期更换。解决这一挑战的明显解决方案是开发完全依赖从人体或周围环境中获取的能量的自供电系统。EAP 已被证明能够获取振动机械能(Lallart 等人,2012 年)和海浪能(Jean 等人,2012 年)。EAP 可以根据其所属的晶体类别(即中心对称或非中心对称)分为不同的亚组。当具有对称中心的介电材料受到电场刺激时,对称性将抵消阳离子和阴离子的运动,不会导致晶体的净变形。然而,化学键不是谐波的,键的非谐性会引起二阶效应,导致晶格的净变形很小。(Vijaya,2013)发现变形与电场的平方成正比,与电场的方向无关。这种效应称为电致伸缩。由于这种非谐波效应存在于所有介电体中,因此所有介电体都是电致伸缩材料。
电致发光螺纹的进步(适合编织或编织)为开发发光纺织品开了开门,推动了市场增长的柔性和可穿戴状态。尽管这些纺织品具有自定义设计和图案的直接绣花可能会带来可观的好处,但机器刺绣的严格需求挑战了这些线程的完整性。在这里,我们提出了刺绣多色的螺纹 - 蓝色,绿色和黄色,与标准刺绣机兼容。这些线程可用于将装饰设计缝合到各种消费织物上,而不会损害其耐磨性或发光功能。演示包括阐明有关消费产品的特定消息或设计,并在头盔衬里上发出紧急警报,以实现身体危害。我们的研究提供了一个全面的工具包,用于将发光纺织品集成到时尚的,定制的工艺品中,该工艺品是根据各种灵活和可穿戴式展示的独特要求量身定制的。
尽管已经对物理特性的改进进行了深入研究,但通过开发完全无机的WO 3 - 含糖纳米复合材料来扩大外观(即WO 3涂层的颜色和光泽)的关注较少。Wang及其同事[12]最近报道了一个创新的例子[12],它们结合了结构性色彩与光学索引的变化,从而获得了各种各样的颜色。在使用周期性结构,QU和同事[13]的另一项工作中,制备了逆蛋白石NIO膜。它们根据施加的电压和视角移动颜色,并实现了多种颜色。电致色素透明,半透明和非转交涂层都对节能和先进的材料充满希望:但是,在优化性能和开发专业产品方面,仍然有很多工作仍然存在。[14,15]
宽频段晶体中的抽象缺陷中心对它们在光电和传感器技术中的应用中的潜力引起了人们的兴趣。然而,众所周知,由于钻石,碳化硅或氧化铝的高度绝缘晶体中的缺陷,由于其较大的内部耐药性,因此很难电气兴奋。为了应对这一挑战,我们意识到了基于十六角硼(HBN)的碳中心的垂直隧道连接处令人兴奋的缺陷范式。通过Van der Waals技术的设备的合理设计使我们能够升高和控制与缺陷到波段和intradefect的电致发光有关的光学过程。对隧道事件的基本理解是基于HBN中的谐振缺损状态之间电子波函数振幅转移到石墨烯中金属状态的,这导致由于组成材料的不同条带结构而导致电子特性的巨大变化。在我们的设备中,通过隧道通路的电子衰变与辐射重组竞争,由于特征性隧道时间在屏障的厚度和结构上具有显着的敏感性,导致载体动力学的可调性程度。这使我们能够实现Intrade的过渡的高耐高率电激发,超过了几个数量级,因此在子兰段式方案中光激发的效率。这项工作代表了通用且可扩展的平台的显着进步,用于使用宽带间隙晶体中的缺陷中心的电动设备,其特性通过在设备工程水平上激活不同的隧道机制进行调制。
subμm光刻发展至少可以追溯到1983年,并于1986年进行了审查,当时该领域仍处于大学研究状态[2]。目标是实现具有尖锐侧壁的二维模式,其尖锐的侧壁明显小于常规光学方法的可能性,这些光学方法被光的波长确定和限制。不仅考虑了光孔构成重要的方法,而且还考虑了光孔本身产生所需模式的能力。在上述出版物中回顾了几种用于生成光刻图像的方案 - 光影影像学,接触光刻,全息光刻,电子束光刻,X射线光刻和离子光刻。强度降解