基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |
摘要:在这项工作中,我们设计和模拟了具有电荷平衡漂移层的高性能垂直功率MOSFET,这调节了从超级二次到线性的RON-BV关系。所提出的设备是使用超级接线漂移层设计的,该层调节了从超级二次到线性的RON -BV关系。所提出的设备具有从超级接线漂移层隔离的源和通道区域。与Balliga的功绩相比,与其他常规设备相比,该设备的性能显着改善。一项2D TCAD仿真研究表明,外延层厚度为50μm的拟议装置显示,电阻为3.84MΩ.cm2,分解电压为833V,这是以前文献中在此故障电压下在先前文献中报告的电阻最低的电压。此外,还完成了电荷不平衡和电容分析的研究,包括计算门电荷。Balliga为所提出的结构的所有漂移厚度计算的Balliga值(FOM)的值显着超过了迄今为止报道的常规超级连接结构。
Biopac 摘要 — 用于恢复运动和感觉的双向脑机接口 (BD-BCI) 必须实现同时记录和解码来自大脑的运动命令以及通过体感反馈刺激大脑。之前,我们开发并验证了一种用于运动解码的完全植入式 BCI 系统的台式原型。在这里,原型人工感觉刺激器被集成到台式系统中,以开发完全植入式 BD-BCI 的原型。人工感觉刺激器采用基于脉冲宽度调制的主动电荷平衡机制,以确保对长期接口电极的安全刺激,防止损伤脑组织和电极。在幻影脑组织中测试了 BD-BCI 系统的主动电荷平衡的可行性。通过电荷平衡,可以明显去除电极上的残留电荷。这是迈向完全植入式 BD-BCI 系统的关键里程碑。