对新型电动激活形状的记忆聚合物复合材料(SMPC)进行了深入研究,用于数字光处理3D打印,由聚(乙二醇)二丙烯酸二丙烯酸/聚(羟基乙基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基)组成。可将光电(Meth)丙烯酸酯系统的组成进行精细调整以量身定制基质的热力学特性,而CNTS对配方的光反应性和流变性能的影响进行了研究,以评估可打印性。电测量结果证实,将CNT掺入聚合物矩阵中可以使电导率产生电导率,因此有可能使用Joule效应远程加热纳米复合材料。鉴于达到的高形状(R F)和形状恢复(R R)比率(RF≈100%,R R> 95%)证实了通过焦耳加热驱动形状存储周期的可行性证明了这类CNT/SMPC的显着电触发响应效应。最后,它显示了如何激活模块化和选择性的电动形状恢复,最终可能会设想远程和选择性控制的智能设备的4D打印。
摘要。光学超表面已成为光子学的一项突破性技术,它利用超薄表面纳米结构在亚波长尺度上对光 - 物质相互作用提供无与伦比的控制,从而催生了平面光学。虽然大多数已报道的光学超表面都是静态的,具有由制造过程中设定的成分和配置决定的明确定义的光学响应,但通过施加热、电或光刺激具有可重构功能的动态光学超表面的需求越来越大,并成为研究和开发的前沿。在各种类型的动态控制超表面中,电可调光学超表面因其响应时间快、功耗低和与现有电子控制系统兼容而显示出巨大的前景,为通过电调制动态可调光 - 物质相互作用提供了独特的可能性。在这里,我们全面概述了在这个快速发展的领域中探索的最先进的设计方法和技术。我们的工作深入研究了电调制的基本原理、实现可调性的各种材料和机制以及主动光场操纵的代表性应用,包括光振幅和相位调制器、可调偏振光学器件和波长滤波器以及动态波整形光学器件(包括全息图和显示器)。本综述以我们对电触发光学超表面未来发展的看法结束。
从可植入电极中的长期和高质量的信号采集性能是建立稳定且有效的脑部计算机界面(BCI)连接的关键。脑组织的炎症反应阻碍了植入电极的慢性性能。为了解决生物界面电极的材料局限性,我们将磺化二氧化硅纳米颗粒(SNP)设计为聚(3,4-乙基二苯二甲苯)(PEDOT)(PEDOT)的掺杂剂,以修改可植入的电极。在这项工作中,通过电化学沉积在PEDOT中通过电化学沉积(NI-CR)合金电极和碳纳米管(CNT)纤维电极纳入PEDOT,而不会影响急性神经信号记录能力。在用PEDOT/SNP-MT涂层后,两个电极的电荷存储能力显着增加,并且在NI-CR合金电极的1 kHz处的电化学阻抗显着降低,而CNT电极的电极显着降低。此外,这项研究还检查了每隔一天的电触发MT释放对大鼠海马植入神经电极的神经记录质量和寿命1个月的影响。两种MT修饰的NI-CR合金电极和CNT电极在26天记录后均显示出明显更高的尖峰振幅。显着地,组织学研究表明,植入的NI-CR合金电极周围的星形胶质细胞数量显着降低了MT释放后。这些结果证明了PEDOT/SNP-MT治疗在改善慢性神经记录质量可能通过其抗渗透性特性改善的有效结果。
用于量子纠缠和量子逻辑操作的自旋 - 光子接口该项目旨在控制最基本层面的光与物质之间的相互作用:Qubits。为此,我们最近在单个材料值(单电荷的旋转)和单个光子量子位(单个光子的极化)之间开发了有效的界面。我们的界面使用半导体孔携带的自旋量子置量位,限制在纳米尺度的INAS量子点(QD)中,确定性地耦合到电触发的微型腔。正如我们所证明的那样,这种QD-腔结构反映的光子经历了其极化的极化旋转,顺时针或逆时针,这取决于旋转状态(见图1。使用确定性耦合的自旋光子接口2和极化状态层析成像实验3,我们实现了光子极化状态的完整逆转,由单个旋转4控制。最近,我们使用单个光子5证明了单个旋转的光学探测。在这样的实验中,每个检测到的光子都会在拟议的实习和以下博士学位论文提供的旋转量子量量子上进行测量反作用,我们希望探索此类自旋光子接口的观点以获取量子信息。最终的目标是展示新形式的自旋 - 光子纠缠和光子 - 光子纠缠,并发展由自旋 - 光子相互作用介导的逻辑门。在途中,我们还将执行基本的量子测量,并研究自旋及其固态基质之间的相互作用。C2N组的所有技术,实验和理论专业知识都将成功地领导该项目。我们欢迎具有质量物理,光学和/或固态物理学背景优秀背景的高度动力申请人,并且对理论和数值模拟有品味。