摘要:人工智能 (AI) 是一种革命性的范式,它为每个人提供了基于第六代 (6G) 边缘计算的电子医疗服务。因此,本研究旨在推动基于人工智能的经济高效的医疗保健应用。信息物理系统 (CPS) 是互联网世界的关键参与者,人类及其个人设备(如手机、笔记本电脑、可穿戴设备等)为医疗保健环境提供了便利。整个医疗领域中传感器和执行器的数据提取、检查和监控策略都由云技术推动,以吸收和接受整个新兴革命浪潮。对来自传感器设备的大量数据进行高效和准确的检查在带宽、延迟和能源方面造成了限制。由于医疗物联网 (IoMT) 的异构性,驱动的医疗保健系统必须智能、可互操作、融合和可靠,以提供普及且经济高效的医疗保健平台。不幸的是,由于功耗较高和数据包传输率较低,在联网医疗中实现可互操作、收敛和可靠的传输具有挑战性。在这种情况下,本文有四个主要贡献。第一个贡献是开发单芯片可穿戴心电图 (ECG),并借助模拟前端 (AFE) 芯片模型(即 ADS1292R)来收集 ECG 数据,以使用基于物联网的信息物理系统 (CPS) 检查老年或慢性病患者的健康状况。第二个贡献提出了一种基于模糊的可持续、可互操作和可靠算法 (FSIRA),这是一种智能和自适应决策方法,可根据所选参数对急诊和危重患者进行优先排序,以合理的成本提高医疗质量。第三个贡献是提出了一种用于移动和联网医疗的特定基于云的架构。第四个贡献是在可靠性、数据包丢失率、收敛性、延迟、互操作性和吞吐量之间找到适当的平衡,以支持自适应 IoMT 驱动的联网医疗。经过检验和观察,我们提出的方法优于传统技术,因为它提供了高可靠性、高融合度、互操作性,以及从医疗健康角度分析和解释系统准确性的更好基础。对于 IoMT,启用医疗云是需要关注的关键因素,因为它还面临着带宽减少、延迟增加和能耗增加的巨大障碍。因此,我们提出了在 6G 平台上面向 IoMT 的智能医疗的带宽、互操作性、可靠性、延迟和能耗之间的数学权衡。
本教程介绍了一种性能工程方法,该方法使用人工智能和耦合仿真来优化边缘/雾/云计算环境的服务质量 (QoS),该仿真是联合仿真型容器编排 (COSCO) 框架的一部分。它介绍了基本的人工智能和联合仿真概念、它们在雾计算背景下的 QoS 优化和性能工程挑战中的重要性。它还讨论了如何将人工智能模型(特别是深度神经网络 (DNN))与模拟估计结合使用以做出最佳资源管理决策。此外,我们还讨论了一些使用 DNN 作为替代方法来估计关键 QoS 指标的用例,并利用此类模型在分布式雾环境中构建动态调度策略。本教程使用 COSCO 框架演示了这些概念。COSCO 中的指标监控和模拟原语展示了基于人工智能和模拟的调度程序在雾/云平台上的有效性。最后,我们为雾管理领域出现的资源管理问题提供了人工智能基线。
•URP是从2000 - 2004年开始的一条直线,在2064年的自然条件下,对于每个I类区域。•此URP是一个跟踪指标,如果I类区域在GlidePath上方,则会触发其他规则要求。•该线路或“滑行路”显示了在任何特定年份需要实现的可见性改善,才能到达2064年。但是,在URP以下不是安全港,而2064则不代表该计划的结束日期。
1。教育部的绿色制备和功能材料应用主要实验室,湖北大学,武汉430062,中国2。固体润滑的国家主要实验室,兰州化学物理研究所,中国科学院,兰州730000,中国摘要,世界人口的爆炸性增长以及工业用水消耗的迅速增长,世界供水已陷入危机。淡水资源的短缺已成为一个全球问题,尤其是在干旱地区。本质上,许多生物可以在恶劣的条件下从雾水中收集水,这为我们提供了开发新功能性雾收集材料的灵感。大量的仿生特殊润湿合成表面是合成的,用于水雾收集。在这篇综述中,我们引入了一些自然界的水收集现象,概述了生物水收集的基本理论,并总结了生物水收集的六种机制:表面润湿性增加,水传输面积增加,长距离水的散热,水积累和储存,冷凝水,凝聚力促进和重力促进和重力驱动。然后,讨论了三种典型生物的水收集机制及其合成。及其功能,收集水效率,其仿生材料中的新发展,包括仙人掌,蜘蛛和沙漠甲虫。多种生物学的研究是受到nepenthes潮湿和光滑的蠕动的启发。彼此相互结合的各种生物水收集结构的出色特征远远优于其他单一合成表面。此外,植物雾收集材料的制备和应用的主要问题以及材料雾收集的未来发展趋势。
对于具有高风能感知能力的真正有效的电力系统来说,准确的风能预测非常重要。风能预测以及风力发电资源通过将风能转换为叶片的旋转能,再通过发电机将旋转能转换为电能来接收电能。风能随风速的立方增加。已经发展出许多常见的深度学习方法来实现风能预测。基于深度学习的方法被称为简单而强大的方法,近年来已用于风能预测并取得了一定的成功。然而,由于缺乏适当的特征选择过程,并且为了最大限度地减少用于风能预测的损失的影响,在处理多输入风能数据时需要大量计算,因此对可扩展性造成负面影响,从而影响风能预测时间。为了解决这些问题,在本文中,提出了一种称为同质点互信息和深度量子增强 (HPMI-QDR) 风能预测的方法。 HPMI-DQR 方法分为两个部分。在第一部分中,使用同质点互 (HPM) 特征选择模型设计了使用输入风力涡轮机数据进行稳健风力预测所需的信息和相关特征。在第二部分中,选择相关特征后,使用深度量子强化学习模型进行实际风力预测。为了验证所提出的方法,使用风力涡轮机 SCADA 数据集进行构建和测试。与使用传统技术相比,所提出方法的仿真结果显示,风力预测准确度提高了 13%,最短风力预测时间缩短了 25%,风能发电量提高了 20%,真实阳性率提高了 25%。此外,风力预测时间也有了显着改善,误差最小。
▪ 高能源潜力: 海上风速通常比陆上风速更快、更稳定,从而能够可靠地生产能源。 ▪ 靠近人口中心: 风速强的地区通常位于人口稠密的地区附近,因此可以战略性地选择租赁区域。 ▪ 土地利用效率: 宝贵的陆上土地可以自由用于其他用途,同时考虑到选择发电地点的机会成本。 ▪ 创造就业机会: 随着行业的发展,工程师、金属工人、电工、涡轮机技术员和许多其他职业的多元化劳动力将供不应求。