人工智能系统架构师可以通过设计本质上透明的系统来增加用户信任。我们提出将人工智能系统表示为人工智能模型(算法)、数据(输入和输出,包括结果)和具有视觉解释(例如图形、维恩图)的用户界面的融合。通过为人工智能系统设计允许用户对其进行控制的人为控制和反馈机制,我们可以将透明度集成到现有的用户界面中。我们的计划是使用众所周知的可用性原则为人工智能系统设计透明用户界面的原型。通过进行调查,我们将研究它们的影响,看看这些原则是否有助于用户自信地使用人工智能系统,以及用户是否认为系统足够透明。
摘要 – 电极和神经元之间界面的电特性高度依赖于界面几何形状和其他参数。有限元模型在一定程度上可用于研究这些特性。不幸的是,这种模型在计算上非常昂贵。通过简化这些模型,可以减少计算时间。在这项工作中,我们使用基于 Krylov 子空间的模型降阶来简化电极-神经元界面的简化线性化有限元模型。这有助于在系统级耦合到 Hodgkin-Huxley 模型,并大大减少了计算时间。原始有限元模型的精度在很大程度上得以保留。关键词:神经元-电极界面,Hodgkin-Huxley 模型,模型降阶,有限元模型 1. 简介
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
模块 4 机器学习和神经网络模型 本课程提供一种创建引人入胜且顺畅的用户界面的实用方法。该作业与以用户为中心的技术、内容策略和界面开发密切相关。我们将设计原型、线框和详细的用户界面。我们将从用户界面的角度分析不同的业务解决方案和界面并绘制流程图。我们将合作探索其他原型格式并创建线流程图和可视化 UI 原型。我们将熟悉 UI 设计的最新趋势,并使用线框、原型设计和详细 UI 设计中最新和最常见的工具。我们将学习根据用户洞察和业务需求创建响应式 UI 和移动应用程序设计。
界面实现技术,例如 Java 的 Swing 类(Elliott 等,2002 年)或 XHTML(Musciano 和 Kennedy,2002 年),他们开发的界面通常没有吸引力,不适合目标用户。因此,我关注的是交互的设计过程,而不是实现支持该交互的用户界面的软件。由于篇幅限制,我只考虑使用图形用户界面的交互。我不讨论需要特殊(可能非常简单)显示器的界面,例如移动电话、音乐播放器、DVD 播放器、电视和打印机。当然,我只能在这里介绍这个主题,我推荐 Dix 等人(Dix ,et al.,2004)、Weiss(Weiss,2002)和 Shneiderman(Shneiderman,1998)等人撰写的文本,以获取有关该主题的更多信息。
Claudia Cancellieri 博士是 Empa 连接技术和腐蚀实验室的团队负责人/研究员。2008 年,她在洛桑联邦理工学院 (EPFL) 获得物理学博士学位,专门研究应变下铜氧化物和氧化物薄膜的脉冲激光沉积生长。在日内瓦大学的第一个博士后期间,她专注于复杂氧化物界面的生长和特性。她在同步加速器瑞士光源保罗谢尔研究所继续研究该主题,在那里她广泛使用光谱技术来推导埋藏复杂氧化物界面的电子能带结构。她目前的研究课题包括研究功能材料(包括多层系统)的微观结构、缺陷、应力和电子特性。
5 原则性界面设计 78 5.1 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2 不良界面的风险 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.6 系统模块化、可见性、控制和正确性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4 通过分析实现清晰度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ...
扫描二维码即可进入 eNavFit 网页。访问 MyNavy HR 门户网站的“资源”部分,查找可帮助您使用 eNavFit 界面的重要资源,包括: