根据国际脑炎联盟诊断临床状况的2013年提出的标准,必须使用一个主要标准:由于意识或人格变化水平的降低,精神状态变化24小时以上,而没有其他可解释的原因。Still, two additional criteria are needed for possible encephalitis and three or more for probable or confirmed, including: fever greater than 38ºC in the last 72 hours or after the onset of symptoms, generalized or focal seizures without previous epileptic disorders, new neurological symptoms focal lesions, leukocytes greater than 5 mm 3 in the cerebrospinal fluid and changes in neuroimaging and/or脑造影检查表明脑炎[10]。此外,在怀疑自身免疫性病因的情况下,需要通过检测自身抗体确定的明确诊断[2]。但是,2013年提出的标准无法区分脑炎的自身免疫和感染性病因。因此,基于针对自身免疫过程的标准的需求,Graus等人在2016年建立了自身免疫性脑炎的临床诊断标准[11]。
目的非典型畸胎样横纹肌样瘤 (ATRT) 是一种侵袭性儿童脑肿瘤,目前尚无标准治疗方法,估计患者中位生存期为 12 至 18 个月。先前的基因分析表明,细胞周期蛋白 D1 和 zeste 同源物增强子 2 (EZH2)(一种与许多癌症有关的组蛋白甲基转移酶)是 ATRT 致瘤性的关键驱动因素。由于 EZH2 和细胞周期蛋白 D1 的作用由多种细胞周期蛋白依赖性激酶 (CDK) 促进,作者试图研究使用多 CDK 抑制剂 TG02 靶向 ATRT 中的 CDK 的潜在治疗效果。方法选择人类 ATRT 细胞系 BT12、BT37、CHLA05 和 CHLA06 进行研究。分别通过 Cell Counting Kit-8 测定、细胞计数、克隆形成测定和流式细胞术评估 TG02 对细胞活力、增殖、克隆形成和凋亡的影响。使用类似的方法确定 TG02 与放射治疗 (RT) 或顺铂联合治疗的效果。使用 CompuSyn 软件计算 TG02-顺铂联合治疗的协同指数。结果观察到 TG02 通过限制细胞增殖和克隆形成以及诱导细胞凋亡来显著抑制 ATRT 细胞体外生长。 TG02 以剂量依赖性方式抑制 ATRT 细胞增殖并降低细胞活力,半最大有效浓度 (EC 50 ) 值为纳摩尔 (BT12, 207.0 nM;BT37, 127.8 nM;CHLA05, 29.7 nM;CHLA06, 18.7 nM)。TG02 (150 nM) 在治疗后 72 小时显著增加了 ATRT 细胞凋亡的比例 (TG02 8.50% vs 对照组 1.52% BT12 细胞凋亡,p < 0.0001;TG02 70.07% vs 对照组 15.36%,p < 0.0001)。联合治疗研究表明,TG02 在 ATRT 细胞中是一种有效的放射增敏剂(BT12 存活率,RT 51.2% vs RT + TG02 21.7%)。最后,CompuSyn 分析表明,TG02 在几乎所有治疗剂量下都与顺铂协同作用于 ATRT 细胞。这些发现在涵盖 ATRT 所有三个分子亚群的细胞系中是一致的。结论本研究结果证实,TG02 是一种有效的体外 ATRT 治疗剂。鉴于缺乏针对 ATRT 的标准疗法,这些发现有助于满足尚未满足的需求,并支持进一步研究 TG02 作为这种致命疾病患者的潜在治疗选择。
1型糖尿病(T1D)导致免疫系统破坏了胰腺β细胞,导致慢性高血糖和胰岛素治疗的依赖。当前的治疗方法,包括胰岛素置换,胰岛移植和胰腺移植,并不能完全恢复正常血糖症,并且有自己的并发症和局限性。干细胞衍生的β细胞通过提供潜在的无限胰岛素产生细胞来源提供了有希望的替代方法。然而,安全性受到脱靶细胞生长的风险,包括畸胎瘤形成,非内分泌脱靶细胞分化和致癌突变。本综述研究了移植位点在最小化T1D干细胞衍生的β细胞疗法中脱靶细胞生长的作用。每个移植部位的微环境会以氧气张力,细胞外基质(ECM)组成,血管形成和局部细胞信号传导等因素来影响细胞产物的安全性。评估的部位包括肝脏,皮下空间,肌肉内组织,血管内区域,性腺脂肪垫,omentum,Omentum,骨髓骨髓和胃粘膜粘膜粘膜。在分析的部位中,前直肠鞘下的腹腔内植入给出了最有希望的结果。该部位支持血管化和β细胞的成熟,同时表现出低靶向细胞生长的发生率较低。动物和人类研究都证实了其在防止畸胎瘤形成和靶向细胞分化方面的功效,使其成为临床应用的良好候选者。肌内空间也是一个有前途的部位,因为它支持细胞存活并最大程度地减少肿瘤形成,尽管在该部位发现了某些畸胎瘤形成。相反,肝内移植是一种共同的选择,但由于肝脏的再生和免疫调节特性而带来了重大风险,这可以促进肿瘤的生长和畸胎瘤形成。皮下空间虽然可访问,但提出了与低血管和缺氧相关的挑战,增加了靶向细胞持久性和β细胞功能受损的可能性。本文得出结论,仔细选择移植部位对于提高干细胞衍生的β细胞治疗在T1D中的安全至关重要。肌内和肌内部位提供了最佳的环境,以减少靶向脱靶细胞的生长并确保移植细胞的功能整合。
我们回顾了2023年发表的自身免疫性脑炎(AE)文章。进行了元分析,以终止卵巢畸胎瘤切除对N - 甲基 - D - 天冬氨酸受体(NMDAR)和 - 胫骨脑炎的作用。但是,数据不足以提供有关畸胎瘤切除的建议。最近,开发了含有Immu -Noglobulin g和NMDAR亚基的FC部分的融合蛋白。该构建体可以中和NMDAR抗体并抑制NMDAR抗体与受体的结合。嵌合自身抗体受体(CAAR) - T细胞也被视为NMDAR脑炎的潜在治疗方法。CAAR - T细胞表达细胞外NMDAR抗原和细胞内信号传导结构域,该抗体仅对产生NMDAR抗体的B细胞具有细胞毒性。一项反性 - 抗亮氨酸 - 丰富的神经胶质瘤 - 灭活1(LGI1)脑炎的研究表明,少数患者的功能性较差和复发。高龄,认知障碍和脑脊液中的LGI1抗体阳性与较差的相关 -
OZTX-556是使用独特的纯化方法(约98%的纯度)来消除不良细胞并优化分化方案,从而使心肌细胞足够成熟。实验表明,在长期植入和安全性超过7个月的大鼠中,左心室射血分数的绝对值超过15%,超过7个月,植入后没有畸胎瘤。此外,在猴子(> 10%EF)中发现了类似的结果,而10%EF点的变化等同于在人类中降低NYHA的影响。此外,我们证明了OZTX-556适用于大规模生产,易于运输和管理,拥有40份全球专利。在人类试验中,OZTX-556很快就会发起,我们相信Orizuru Therapeutics将提供慢性心力衰竭的一流产品。
摘要 TALEN、CRISPR-CAS9和prime editing(PE)等技术可用于编辑各种细胞的基因组。然而,造血干细胞和免疫细胞的基因组可能很快就会被更频繁地编辑以用于治疗目的。这是因为血液和骨髓作为组织缺乏非常复杂的三维结构。此外,诱导性多能细胞 (iPSc) 被认为是具有治疗潜力的细胞来源,但由于由其发展而来的畸胎瘤,仍然存在风险。还可以补充的是,敲除编辑比编辑更容易将突变基因转变为正常基因。反过来,CAR-T 等细胞或病毒感染的细胞是敲除基因组编辑系统作为治疗的一部分的重要目标。免疫系统细胞似乎也特别适合作为通过合成生物学创造全新细胞类型的起点,其中基因组编辑技术发挥着特殊的作用。所有这些都意味着 CRISPR-CAS9 和 PE 正在引起免疫学家越来越多的兴趣。本文讨论了这些技术的工作原理并解释了其不完善的原因。
同种异体胰岛移植可以重新建立血糖控制,并有可能摆脱对胰岛素的依赖,但由于器官捐赠者的稀缺,这一方法受到了严重限制。然而,一种新的胰岛素分泌细胞来源可以使细胞疗法广泛用于糖尿病治疗。干细胞生物学,尤其是多能干细胞 (PSC) 技术的最新突破凸显了干细胞在再生医学中的治疗潜力。对调节 β 细胞发育阶段的理解促成了 PSC 分化为 β 细胞的方案的建立,并且 PSC 衍生的 β 细胞出现在首批开创性临床试验中。然而,植入前最终产品的安全性仍然至关重要。尽管 PSC 在体外分化为功能性 β 细胞,但并非所有细胞都能完成分化,一小部分细胞仍未分化,移植后有形成畸胎瘤的风险。一例干细胞衍生肿瘤可能会使该领域倒退数年。因此,本综述讨论了提高 PSC 衍生 β 细胞安全性的四种方法:将体细胞重编程为诱导 PSC、选择纯分化胰腺细胞、消除最终细胞产品中的污染 PSC、以及使用工程自杀基因控制或破坏致瘤细胞。
摘要:自噬是真核细胞中发生的一种降解过程,以维持体内平衡和细胞存活。在营养缺乏、缺氧或给药等应激条件下,自噬被诱导以抵消可能导致细胞死亡的途径。在癌症中,自噬起着矛盾的作用,既充当肿瘤抑制因子(通过清除细胞中受损的细胞器并抑制炎症,或者通过促进基因组稳定性和肿瘤适应性反应),又充当促生存机制以保护细胞免受化疗等应激的影响。神经源性儿科实体瘤代表了各种儿童癌症,具有独特的解剖位置、细胞来源和临床表现。这些肿瘤是儿童发病和死亡的主要原因,新的分子诊断和治疗方法对于延长生存期和降低发病率是必不可少的。本文回顾了我们对自噬调节如何在儿童脑肿瘤实验模型中表现出抗肿瘤特性的理解进展,这些脑肿瘤包括髓母细胞瘤 (MB)、室管膜瘤 (EPN)、儿童低级别和高级别胶质瘤 (LGG、HGG)、非典型畸胎瘤/横纹肌样瘤 (ATRT) 和视网膜母细胞瘤 (RB)。我们还从临床角度讨论了针对自噬如何与这些特定的儿童肿瘤相关。
免疫检查点 B7-H3 (CD276) 是具有免疫调节特性的 B7 家族成员,最近被确定为难治性血癌和实体恶性肿瘤免疫治疗的新靶点。虽然对脑恶性肿瘤中 B7-H3 的研究有限,但人们对探索其在此背景下的治疗潜力的兴趣日益浓厚。B7-H3 在调节肿瘤微环境中的免疫细胞、癌症相关成纤维细胞和内皮细胞的功能方面起着至关重要的作用,有助于形成促肿瘤环境。这种微环境促进了不受控制的癌细胞增殖、代谢增强、癌症干细胞增加以及对标准治疗的抵抗力。阻断 B7-H3 并终止其免疫抑制功能有望改善抗肿瘤免疫反应,进而改善肿瘤进展。针对 B7-H3 的临床前或观察性研究和早期试验结果显示,该药物在胶质母细胞瘤 (GBM)、弥漫性内在性脑桥神经胶质瘤 (DIPG)、髓母细胞瘤、神经母细胞瘤、颅咽管瘤、非典型畸胎瘤样/横纹肌样瘤和脑转移瘤中具有良好的抗肿瘤疗效和可接受的毒性。正在进行的临床试验正在研究 CAR-T 细胞疗法和抗体-药物偶联疗法的单独使用或与标准治疗或其他治疗方法联合使用,以 B7-H3 为靶点治疗难治性或复发性 GBM、DIPG、神经母细胞瘤、髓母细胞瘤、室管膜瘤和转移性脑肿瘤。这些试验有望为成人和儿童人群中这些具有挑战性的颅内恶性肿瘤提供有效的治疗选择。
基因组工程利用可编程核酸酶,如转录激活因子样效应核酸酶 (TALEN) 和成簇的规则间隔短回文重复相关蛋白 9,促进在各种细胞类型的特定基因组位点引入遗传改变。这些工具已应用于癌症建模,以了解人类癌症中发现的越来越多的突变目录的致病作用。关于脑肿瘤,源自人类诱导多能干细胞 (iPSC) 的神经祖细胞,这些细胞被设计成在胶质母细胞瘤(成人最常见的原发性脑癌)的不同分子亚型中观察到的不同遗传驱动突变组合,当在小鼠体内原位移植时会引起脑肿瘤。这些胶质母细胞瘤模型重现了每种分子亚型的转录组特征,真实地模拟了胶质母细胞瘤的病理生物学,包括肿瘤间和肿瘤内异质性、染色体畸变和染色体外 DNA 扩增。在 iPSC 中对髓母细胞瘤和非典型畸胎瘤样横纹肌样瘤中发现的基因突变进行类似改造,已产生可进行基因追踪的模型,这些模型与这些儿童脑肿瘤具有临床相关性。这些模型有助于提高对肿瘤发生遗传原因的理解,并为治疗发现提供了一个新平台。在三维脑类器官的背景下进行研究,这些模型有助于研究肿瘤侵袭和治疗反应。总之,通过基因组工程对脑肿瘤进行建模,不仅可以建立由患者样本中观察到的真实基因突变驱动的真实肿瘤化身,而且还有利于在同基因背景下对特定基因改变进行功能研究。