不同类型的液体固定表面,超疏水材料和涂料是良好的。有效的超疏水表面必须具有地形粗糙度和防水表面化学。微型或纳米乳状表面,通过微观图案制造,然后进行表面化学修饰[13,14],通常用于系统地探索超恐惧症的特性。但是,它们的织物需要在大规模应用上经济上可行的光刻过程。[15]为了克服这一问题,已经报道了用于预先处理超疏水表面和材料的众多替代解决方案。[16,17]中,通过喷涂沉积的涂料在工业和企业应用中都发现了市场。[15]然而,喷雾沉积过程和材料的随机性会导致涂层均匀性的变化,并带来了提供一致的高涂层质量的挑战。在很大程度上缺乏这些广泛使用涂层的润湿性能的系统定量评估,[18],可以使涂料程序和涂料配方的优化有益于优化。表面的润湿表征传统上是通过光接触角性测量法(CAG)进行的。[19]该技术在高度非润湿表面(例如超疏水涂层)上的准确性降低,在这些技术中,前进和退化的接触角的误差可以达到10°。[23][20–22]此外,人们普遍理解,这些测量不适合研究表面润湿性的空间异质性,因为几毫米的横向分辨率导致平均润湿性能在大面积上平均。
摘要 机械稳定性和化学稳定性不良是限制超疏水涂层广泛工业应用的重要因素之一。本研究采用混合电沉积法合成了Ni-P@Ni分级纳米结构涂层作为稳定涂层。研究了所制备样品的润湿性、耐腐蚀性、机械稳定性和化学稳定性。研究结果表明,在Ni纳米锥表面涂覆非晶态Ni-P涂层可提高耐腐蚀性,同时增强机械稳定性和化学稳定性。此过程将腐蚀电流密度从1.02降低到0.0076 µA.cm -2 。电化学阻抗谱 (EIS) 结果也显示,涂覆Ni-P涂层后R dl 增加。此外,通过在200 cm机械稳定性测试后创建Ni-P涂层并在3.5%NaCl电解质中浸泡8天,可以保持疏水状态。这项研究介绍了一种创建稳定超疏水涂层的新方法。
我们的产品是为了承受最恶劣的环境和气候条件而开发的,我们的聚合物油漆密封剂具有一些技术上最先进的化学。疏水涂层键合到油漆,留下高光泽度。它将表面与有害的酸雨和大气污染物密封。油漆密封胶是由训练有素的技术人员专业使用的,您要做的就是洗车。什么可以简单?
我们的产品已开发以承受最恶劣的环境和气候条件,我们的油漆密封剂具有一些技术上最先进的化学反应。疏水涂层键合到油漆,留下高光泽度。它将表面封闭在有害的酸雨和大气污染物上,并消除了蜡和抛光的需求。油漆密封胶是由训练有素的技术人员专业使用的,您要做的就是洗车。什么可以简单?
我们的产品已开发以承受最恶劣的环境和气候条件,我们的油漆密封剂具有一些技术上最先进的化学反应。疏水涂层键合到油漆,留下高光泽度。它将表面封闭在有害的酸雨和大气污染物上,并消除了蜡和抛光的需求。油漆密封胶是由训练有素的技术人员专业使用的,您要做的就是洗车。什么可以简单?
的过程,包括涂料和纤维旋转。确定溶剂在聚合物设计中的作用导致了许多问题:什么是好的溶剂?哪些溶剂可以溶解特定的聚合物?溶剂的作用如何影响液化相变的固化聚合物的宏观行为?过去,使用众所周知的热力学方程和参数的半经验技术有助于回答这些问题(例如,Flory - Huggins W参数)。1,2尽管我们已经了解了很多有关聚合物相分离的物理现象,但对于许多不同的聚生物化学物质来说,从第一原理中对聚合物溶解度的定量预测仍然未被发现。此外,溶解度的作用与一个受试者,实验或应用与另一个受试者不同。例如,是否确定聚合物 - 溶剂对在设计过程中是否足够兼容,还是需要知道整个相图?因此,可以解决这些问题的每一个,同时推广到各种方法和应用的预测工具可以帮助加速,精确地控制新型聚合物化学的合成和设计。聚合物溶解度的最重要影响之一是在聚合物加工中:在溶液涂料,纤维旋转和3D打印等过程中,首先将聚合物溶解在溶剂中,并蒸发或提取该溶剂以固化聚合物。3这些方法已在诸如粘合剂,疏水涂层和柔性电子产品等技术中找到。)。具体而言,薄膜加工技术(例如旋涂,叶片涂层和插槽涂层)通常与聚合物和溶剂混合物一起施用,然后是温度诱导或非溶剂诱导的相分离,每种相位都可以控制所得的形态或膜结构。4–6然而,溶液中聚合物行为的复杂性引起了预测先验从处理条件中产生的材料性能的挑战(例如,,溶剂蒸发率,浓度,温度,压力等。例如,研究表明,在铸造之前,聚合物的溶剂质量和不完全溶解可能会影响聚合行为7和
冰层积聚是一种普遍存在的自然现象,对广泛的社会系统产生了严重而灾难性的影响。以前对防/除冰技术的研究主要集中在温和的实验室条件下,由于使用寿命短,实际适用性有限。因此,迫切需要开发能够承受复杂环境条件的耐用防/除冰技术。在这项研究中,我们成功配制了一种基于石墨烯的疏水涂层。为了规避与环境不友好的有机溶剂相关的挑战,我们使用石墨烯水浆作为基础材料,随后加入聚乙烯醇-水溶液。将所得溶液进行硅氧烷脲交联聚合物的原位聚合,得到所需的涂层溶液。经过溶液喷涂和干燥过程后,最终获得的产品是疏水导电石墨烯 (HCG) 硅氧烷涂层。 HCG硅氧烷涂层的电导率为66 S/m,仅需10秒即可融化冰滴,而传统涂层则需要20至500秒才能完成相同任务。在芬兰北极圈内的一座高山上进行了整个冬季的综合现场测试,结果表明,该涂层在约310 W/m 2 的功率下具有出色的防冰性能。此外,该涂层在约570 W/m 2 的功率下表现出令人满意的除冰性能,可在约10分钟内成功清除积冰。在整个现场测试过程中,温度经常骤降到20℃,同时风速高达12米/秒。材料特性表明,涂层表面的微纳米结构产生良好的疏水行为,这主要归因于亲水和疏水相互作用引起的相分离。此外,聚乙烯醇分子链和原位聚合硅氧烷脲形成的半互穿结构确保了涂层的强度。© 2023 越南国立大学,河内。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
使用电信号 1 来操纵基板上的液滴的能力(称为数字微流体)用于光学 2,3 、生物医学 4,5 、热 6 和电子 7 应用,并已导致商业上可用的液体透镜 8 和诊断套件 9,10 。这种电驱动主要通过电润湿实现,液滴在施加电压的作用下被吸引到导电基板上并在导电基板上扩散。为确保强大而实用的驱动,基板上覆盖有介电层和疏水性面漆,用于介电上电润湿 (EWOD) 11-13 ;这会增加驱动电压(至约 100 伏),并可能因介电击穿 14 、带电 15 和生物污垢 16 而损害可靠性。在这里,我们展示了液滴操控,它使用电信号诱导液体脱湿而不是润湿亲水性导电基底,而无需添加层。在这种与电润湿现象相反的电润湿机制中,液体-基底相互作用不是由电场直接控制的,而是由场诱导的离子表面活性剂与基底的附着和分离控制的。我们表明,这种驱动机制可以在空气中使用掺杂硅晶片上的水执行数字微流体的所有基本流体操作,仅需±2.5伏的驱动电压、几微安的电流和离子表面活性剂临界胶束浓度的约0.015倍。该系统还可以处理常见的缓冲液和有机溶剂,有望成为一种简单可靠的微流体平台,适用于广泛的应用。由于疏水表面是液体吸引机制良好运作的必要条件,我们认识到亲水表面对于液体排斥机制来说是首选。由于大多数材料都是亲水性的,如果发现脱湿驱动有效,则可以像 EWOD 一样实现数字微流体,但不需要疏水涂层。虽然大多数电诱导脱湿现象对常见微流体无效,因为它们基于不可逆过程 17,18 或特殊条件 19 ,但涉及表面活性剂的研究表明可逆性是可能的。例如,已经使用氧化还原活性表面活性剂 20 证明了衍生化金电极上水膜的电引发脱湿。此外,有机液滴已在水性电解质 23 中的共轭聚合物电极上移动。最近,通过使用离子表面活性剂,润滑摩擦系数已在固体-液体-固体配置中切换 21 ,沸腾气泡成核已在液体-蒸汽-固体系统中得到调节 22 。然而,这些方法并没有导致微流体平台技术,这需要可逆、可重复、强大且易于应用于液体-流体-固体系统的电驱动 24 。事实上,我们无法在裸露的金属电极 21,22 或介电涂层电极上用含有离子表面活性剂的水滴获得有效驱动。相反,我们发现裸露的硅晶片可以有效地工作,因为它的天然氧化物具有足够的亲水性,可以轻松脱湿,但又足够薄