进行了直齿轮耐久性试验和滚动体表面疲劳试验,以研究真空感应熔炼、真空电弧熔炼 (VIM-VAR) M50NiL 钢在先进飞机应用中用作齿轮钢,以确定其耐久性特性。并将结果与标准 VAR 和 VIM-VAR AISI 9310 齿轮材料的结果进行比较。使用由 VIM-VAR M50NiL 和 VAR 以及 VIM-VAR AISI 9310 制造的直齿轮和滚动接触杆进行了测试。齿轮节圆直径为 8.9 厘米 (3.5 英寸)。齿轮试验条件为入口油温为 320 K (116 F ),出口油温为 350 K (170 F ),最大赫兹应力为 1.71 GPa (248 ksi),转速为 10 000 rpm。在环境温度下进行台式滚动元件疲劳试验,杆速为 12 500 rpm,最大赫兹应力为 4.83 GPa (700 ksi)。VIM-VAR M5ONiL 齿轮的表面疲劳寿命分别是 VIM-VAR 和 VAR AISI 9310 齿轮的 4.5 倍和 11.5 倍。VIM-VAR M5ONiL 滚动接触杆的表面疲劳寿命分别是VIM-VAR 和 VAR AISI 9310。VIM-VAR M50NiL 材料表现出良好的抗疲劳剥落断裂性能,疲劳寿命远远优于 VIM-VAR 和 VAR AISI 9310 齿轮和滚动接触杆。
4. 结构寿命(设计目标) 基于 4 小时的平均飞行时间,主要结构疲劳寿命的目标如下: - 设计寿命目标 ………………………… 20000 次飞行 - 初始检查的阈值 ………… 8 750 次飞行
摘要 本文在航空合金孔加工的背景下对传统钻孔和螺旋铣削进行了比较研究,阐述了这两种不同的加工工艺对不同航空合金的微观结构和疲劳性能的影响。结果表明,与螺旋铣削工艺相比,两种合金在传统钻孔下都会经历更严重的表面/亚表面塑性变形。对于这两种合金,与传统钻孔相比,螺旋铣削可延长其试样疲劳寿命。在所有加工条件下,Al 2024-T3 的疲劳寿命明显长于 Ti-6Al-4V。使用冷却液通常可减少表面损伤,并可提高加工合金的疲劳性能。此外,还研究了加工表面粗糙度,以进一步阐述不同加工工艺的影响。
此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
第 1 章(传感器和数据采集)首先介绍了充分了解服务载荷/应力以及如何测量这些载荷/应力的重要性。服务载荷对疲劳分析的结果有显著影响,因此需要准确测量实际服务载荷。本章的大部分内容集中于应变计作为准确测量应变/应力的传感器,这是疲劳寿命分析的最重要预测指标。还介绍了各种识别高应力区域的方法,从而介绍了应变计在测试部分中的放置位置。包括温度测量、单位时间内的温度循环次数和温升率。包括以下内容是为了引起人们的注意,疲劳寿命预测既基于使用寿命期间给定应力水平下的循环次数,也基于服务环境。还介绍了基本的数据采集和分析技术。
kemenperin.go.id › download › Pemakai... PDF 2017 年 11 月 16 日 — 2017 年 11 月 16 日 散射因子对飞机部件运行寿命的应用......只要其运行,疲劳寿命就是负载次数的总和。
gruppofraattura.it › paper › download PDF 一月 22, 2023 — 一月 22, 2023 主要负载循环,例如飞机发动机的地-空-地循环和备用发电的启动/停止循环,会导致疲劳寿命...
此前,飞机机身结构定义几何形状中连接机翼机身和垂直尾翼机身的凸耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受严重载荷 [4]。由于最大弯矩,机翼根部将经历最高的应力集中 [5]。支架用于将机翼连接到机身框架。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中持续下降,在极低的极限应力水平下就会发生故障。这是由于重复载荷作用时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身凸耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。