增材制造/合金设计和材料选择的材料和工艺简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 定制合金的开发. . . . . . . . . . . . . . . . . . . . . . . 11 熔融金属增材制造中的工艺-结构关系. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Michael Kirka,橡树岭国家实验室缺陷结构. . . . . . . . . . . . . . . . . . . . . . . . 16 热特征 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Joy Gockel,科罗拉多矿业学院 静态性能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 疲劳性能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 与传统制造业的比较 . . . . . . . . . . . . . . . . 26 金属增材制造中的工艺缺陷 . . . . . . . . . . . . . . . . . 30 Scott M. Thompson,堪萨斯州立大学 Nathan B. Crane,杨百翰大学 激光粉末床熔合 . . . . . . . . . . . . . . . . . . . . . . . 30 激光定向能沉积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 增材制造中的材料建模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 60 盲建模挑战 . . . . . . . . . . . . . 64 物理驱动模型与数据驱动模型 . . . . . . . . . 64 金属增材制造的零件规模工艺建模 . . . . . . . . . . . . . . . . 67 Kyle L. Johnson、Dan Moser、Theron M. Rodgers 和 Michael E. Stender,桑迪亚国家实验室热建模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 72
1 引言 镍基高温合金具有优异的高温力学性能、高抗蠕变和疲劳性能以及非常好的耐腐蚀性能,被广泛应用于现代航空发动机和燃气轮机的涡轮叶片。镍基高温合金在恶劣条件下长期服役的性能,很大程度上取决于合金元素、合金浓度和强化相的形态。在工业实践中,镍基高温合金 René N5 在完全热处理状态下使用。固溶处理可使微观结构部分均质化,随后的时效可获得高体积分数的立方体状 γ′ 沉淀物。因此,获取更多有关铸态高温合金微观结构和性能的信息对于正确设计和控制后续热处理至关重要。枝晶间和枝晶间元素的凝固偏析会诱发非平衡相的形成,如碳化物、共晶相或其他低熔点相,这些相应在均质化过程中溶解[1-3]。
钢筋混凝土桥梁结构在使用过程中不仅要承受车辆过境引起的高频疲劳荷载,还要受到腐蚀环境的影响。长期的疲劳荷载除了对钢筋造成疲劳损伤外,还会引起混凝土开裂、孔结构恶化,从而加速外界腐蚀物质的侵入,降低混凝土的耐久性。长期处于腐蚀环境中也会降低混凝土的性能,引起钢筋材料的锈蚀,影响结构的疲劳性能。因此,疲劳荷载和腐蚀对混凝土存在着共同的影响。本文从材料的角度对混凝土在疲劳荷载和腐蚀的共同作用下,即碳化、氯离子侵蚀、冻融循环、硫酸盐侵蚀下的性能退化进行了综述。本文包括 (1) 疲劳荷载和腐蚀联合作用的试验方法描述,(2) 疲劳荷载和腐蚀联合作用下混凝土性能退化的总结,以及 (3) 考虑疲劳损伤的耐久性退化模型和可以考虑腐蚀的疲劳模型的介绍。最后,描述了疲劳荷载和腐蚀联合作用下混凝土未来的潜在研究。
摘要 近年来,为了改善飞机涡轮盘的疲劳性能,镍基高温合金的制造工艺取得了重大进展,从而导致晶粒尺寸减小。事实上,粒度的变化会影响疲劳裂纹的起始模式以及材料的疲劳寿命。本研究旨在研究新开发的镍基高温合金在双轴平面载荷下的疲劳行为。在不同应力比下进行低周疲劳 (LCF) 试验,以研究多轴应力状态对材料疲劳寿命的影响。使用数字图像相关 (DIC) 技术获得全场位移和应变测量以及裂纹起始检测。给出了与不同载荷比相关的结果,并给出了适当的双轴寿命预测。提到了每种载荷情况下的裂纹检测、应变幅度和裂纹起始循环数与三轴应力比的关系。通过扫描电子显微镜的断口研究发现,疲劳裂纹的萌生机制与三轴应力比无关,大多数疲劳裂纹都是从表面下的碳化物萌生的。关键词 – 多轴疲劳、十字形试样、镍基高温合金
摘要:近年来,Inconel 625 的工业应用显著增长。这种材料是一种镍基合金,以其耐化学性和机械性能而闻名,尤其是在高温环境下。通过金属增材制造 (MAM) 生产的零件的疲劳性能在很大程度上取决于其制造参数。因此,表征由给定参数组生产的合金的性能非常重要。本研究提出了一种表征 MAM 零件机械性能的方法,包括通过激光定向能量沉积 (DED) 进行材料生产参数化。该方法包括在 DED 生产微型样品后对其进行测试,并由通过实验数据开发和验证的数值模型支持应力计算。本文讨论了通过 DED 生产的 Inconel 625 的广泛机械特性,重点是高周疲劳。使用微型样品获得的结果与标准尺寸样品非常一致,因此即使在某些塑性效应的情况下也验证了所应用的方法。至于高周疲劳性能,通过 DED 生产的样品表现出良好的疲劳性能,可与其他竞争金属增材制造 (MAMed) 和传统制造的材料相媲美。
摘要:牙种植体会经历罕见但有问题的机械故障,例如断裂,这些故障最常见的原因是(时间相关的)金属疲劳。本文调查了有关疲劳失效、疲劳识别和种植体在使用过程中的疲劳性能的基本证据。我们首先讨论牙种植体疲劳的概念,首先回顾与此故障机制相关的基本概念。接下来使用扫描电子显微镜识别疲劳失效,以表明此阶段定义得相当明确。我们重申,疲劳失效与种植体设计及其表面状况以及变化很大的使用条件有关。后者的变化程度使得无法设计平均或代表性条件。整个调查都强调了疲劳试验结果的统计性质,以说明从设计角度评估牙种植体疲劳行为的复杂性。当今的牙科植入物疲劳测试仅限于 ISO 14801 标准要求,这可确保认证,但由于要求有限,因此无法为设计目的提供任何见解。我们介绍并讨论了随机谱加载程序,作为在更现实条件下评估植入物性能的替代方案。通过在 0.9% 盐水溶液中进行随机疲劳测试来说明该概念。
AM2 机场垫系统被美国军方用于临时、快速建造的机场。由于连接系统的设计复杂,接头的疲劳行为也复杂,因此预测允许通过 AM2 设施的飞机数量具有挑战性。在此之前,用于预测 AM2 性能的主流方法是基于柔性路面的 CBR 设计程序,使用少量全尺寸测试部分,CBR 范围为 4% 到 10%,并模拟不再使用的飞机。本报告介绍了对安装在不稳定土壤和碎石路基上的 AM2 垫部分进行的九次全尺寸实验的结果,CBR 分别为 6%、10%、15%、25% 和 100%,并提供了改进的关系,用于预测 AM2 垫装置下方的路基变形以及在受到 F-15E 和 C-17 交通影响时相关的疲劳损坏。此外,还介绍了一种实验室装置和程序,用于评估 AM2 型接头的疲劳性能并将其性能与给定的现场条件联系起来,而无需进行全尺寸测试。这些关系适用于目前用于机场路面和垫层系统的设计和评估框架。
本文介绍了一种经济有效的方法来改善碳纤维增强聚合物 (CFRP) 预浸料复合材料的物理和机械性能,其中合成电纺多壁碳纳米管 (MWCNT)/环氧纳米纤维并将其加入到传统 CFRP 预浸料复合材料的层之间。通过优化的电纺丝工艺成功生产出 MWCNT 取向环氧纳米纤维。纳米纤维直接沉积在预浸料层上以实现改善的粘附性和界面结合,从而增加强度并改善其他机械性能。因此,高应力状态下的层间剪切强度 (ILSS) 和疲劳性能分别提高了 29% 和 27%。几乎看不见的冲击损伤 (BVID) 能量显著增加,最高可达 45%。由于 CFRP 层之间存在高导电性的 MWCNT 网络,热导率和电导率也显著提高。所提出的方法能够在预浸料的层间界面处均匀沉积高含量的 MWCNT,以增强/提高 CFRP 性能,这在以前是无法实现的,因为环氧体系中随机取向的 MWCNT 会导致树脂粘度高。
一种具有成本效益的方法,可以改善碳纤维增强聚合物(CFRP)预报复合材料的物理和机械性能,在该复合材料中,在传统的CFRP Prepreg复合材料的层次之间合成了电纺多多壁碳纳米管(MWCNT)/环氧纳米纤维。通过优化的静电纺丝过程成功产生了与MWCNT一致的环氧纳米纤维。纳米纤维直接沉积到预处理层上,以改善粘附和界面粘结,从而增加强度和其他机械性能的改善。因此,高压力性方案的层间剪切强度(ILSS)和疲劳性能分别增加了29%和27%。几乎看不见的撞击损伤(BVID)能量显着增加了45%。由于CFRP层之间高度导电MWCNT网络的存在,热电导率也得到了显着增强。所提出的方法能够在预处理的间层间界面上均匀地沉积MWCNT,以增强/增强CFRP性质,以前尚未证明,由于在环氧系统中由随机定向的MWCNT引起的高树脂粘度。
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。