由于具有 CMOS 兼容性和可扩展性的特点,HfO 2 基铁电体是下一代存储器件的有希望的候选材料。然而,它们的商业化受到可靠性问题的极大阻碍,疲劳是一个主要障碍。我们报告了界面设计的 Hf 0.5 Zr 0.5 O 2 基异质结构的无疲劳行为。构建了一个相干的 CeO 2- x /Hf 0.5 Zr 0.5 O 2 异质界面,其中 CeO 2- x 充当“氧海绵”,能够可逆地接受和释放氧空位。这种设计有效地缓解了电极-铁电界面处的缺陷聚集,从而改善了开关特性。此外,设计了一种对称电容器架构来最大限度地减少印记,从而抑制了循环引起的定向缺陷漂移。这种双管齐下的技术可以减轻氧伏安法产生的化学/能量波动,抑制顺电相的形成和极化退化。该设计确保 Hf 0.5 Zr 0.5 O 2 基电容器具有超过 10 11 次开关循环的无疲劳特性和超过 10 12 次循环的耐久寿命,以及出色的温度稳定性和保持性。这些发现为开发超稳定的氧化铪基铁电器件铺平了道路。
摘要:聚甲醛(POM)纤维是一种具有改善机场道面混凝土性能潜力的新型聚合物纤维。POM纤维对混凝土弯曲疲劳性能的影响是其在机场道面混凝土应用中的一个重要问题。在本研究中,使用纤维体积含量为0.6%和1.2%的普通性能混凝土(OPC)和POM纤维机场道面混凝土(PFAPC)在四个应力水平下进行了四点弯曲疲劳试验,以检查这些材料的弯曲疲劳特性。在使用循环比(n / N)检查弯曲疲劳变形的变化后,进行了弯曲疲劳寿命的双参数威布尔分布检验。然后考虑各种失效概率(生存率)构建了弯曲疲劳寿命方程。结果表明,POM纤维对机场道面混凝土的静载强度无明显影响,PFAPC与OPC静载强度差异在5%以内。POM纤维可使机场道面混凝土的弯曲疲劳变形能力提高近100%,但与OPC相比,POM纤维对机场道面混凝土的疲劳寿命有不同程度的不利影响,最大降低幅度达85%。OPC和PFAPC的疲劳寿命均服从双参数威布尔分布,考虑各种失效概率的单、双对数疲劳方程对双参数威布尔分布的拟合度较高,R2均在0.90以上。PFAPC的极限疲劳强度比OPC低约4%。本次对POM纤维机场道面混凝土弯曲疲劳性能的研究,对POM纤维在长寿命机场道面建设中的应用具有明显的研究价值。
摘要:环境的可持续性和生态耐用性是即将到来的材料时代的必要基准。在结构组件中使用可持续的植物纤维复合材料(PFC)在工业社区中引起了显着兴趣。PFC的耐用性是一个重要的考虑因素,需要在其广泛应用之前对其进行充分理解。水分/水老化,蠕变特性和疲劳性能是PFC耐用性的最关键方面。目前,提出的方法(例如纤维表面处理)可以减轻吸水对PFC机械性能的影响,但完全消除似乎是不可能的,因此限制了PFC在潮湿环境中的应用。PFC中的蠕变没有像水/水分老化那样受到关注。现有的研究已经发现,由于植物纤维的独特微观结构,PFC的显着蠕变变形显着,幸运的是,尽管数据仍然有限,但据报道,增强纤维 - 纤维纤维粘结键可以有效地提高蠕变耐性。关于PFC中的疲劳研究,大多数研究都集中在张力张紧疲劳特性上,但需要更多注意与压缩相关的疲劳性能。PFC在其最终拉伸强度(UTS)的40%的张力疲劳负荷下表现出了一百万个周期的耐力,而与植物纤维类型和纺织结构无关。这些发现在使用PFC进行结构应用中增强了信心,只要采取特殊措施来减轻蠕变和吸水。本文根据上述三个关键因素概述了有关PFC耐用性的当前状态,并讨论了相关的改进方法,希望它可以为读者提供有关PFCS耐用性的全面概述,并强调值得进一步研究的领域。
添加剂制造/合金设计和材料选择的材料和过程简介。。。。。。。。。3 Rachel Boillat,Sriram Praneeth Isanaka和密苏里州科学技术大学传统合金系统的Frank Liou。。。。。。。。。。。。。。。。。。。。。。。。。。3增材制造过程。。。。。。。。。。。。。。。。。。。。5使用增材制造的加工性。。。。。。。。。。。。。8材料微结构,缺陷以及对机械行为的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8定制合金的开发。。。。。。。。。。。。。。。。。。融合金属添加剂制造中的11个过程结构关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Michael Kirka,橡树岭国家实验室缺陷结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16热签名。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个标准结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个位点特定的微观结构控制。。。。。。。。。。。。。。。。。。19其他因素影响结构。。。。。。。。。。。。。。。。。。。金属添加剂制造中的20种结构 - 核关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 23疲劳特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 24测试栏属性适用于组件性能。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 26与传统制造相比。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23疲劳特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24测试栏属性适用于组件性能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26与传统制造相比。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。金属添加剂制造中的26个过程缺陷。。。。。。。。。。。。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30激光定向 - 能源沉积。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36粘合剂喷射。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41过程优化。 。 。 。 。 。 。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。。。。。。。。。。。。。。。。。。。。。。。。。30激光定向 - 能源沉积。。。。。。。。。。。。。。。。。。。36粘合剂喷射。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41过程优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53种方法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55方法库存。 。 。 。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。。。。。。。。。。。。。。。。。。53种方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55方法库存。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56闭环反馈控制。。。。。。。。。。。。。。。。。。。。。57数据驱动的优化。。。。。。。。。。。。。。。。。。。。。。。。。57添加剂制造中的材料建模。。。。。。。。。。。。。。。60 Ashley D. Spear,犹他大学微观结构建模。。。。。。。。。。。。。。。。。。。。。。。。。。60个盲目建模挑战。。。。。。。。。。。。。。。。。。。。。。。。64个物理驱动与数据驱动的模型。。。。。。。。。。。。。64个用于金属添加剂制造的零件尺度工艺建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67固体力学模拟 - 放置应力和失真。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68微结构模拟。。。。。。。。。。。。。。。。。。。。。。。。。70分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。72
收到日期:2021 年 8 月 5 日;修改后收到日期:2021 年 9 月 28 日;接受日期:2021 年 10 月 2 日;在线发布日期:2021 年 11 月 1 日摘要本文对室温下由多孔功能梯度聚合物材料 (PFGPM) 制成的 3D 打印圆柱形试件进行了疲劳寿命试验。在各种孔隙率和梯度指数参数下,获得了完全反向弯曲、平均应力等于零的恒幅载荷的试验结果。使用应力寿命方法通过实验评估疲劳特性。对光滑试件进行了 FEA 模拟,采用了三种加载模式(反向弯曲、反向轴向和反向扭转)。数值分析 (FEA) 和实验结果用于强调应力比 (R) 对疲劳寿命的影响。在反向弯曲试验中使用了五个应力比值(R = -1、0、0.25、0.5 和 1)。试验结果表明,受反向弯曲的试件的寿命比受轴向和扭转载荷模式的试件更长。结果表明,试件的寿命随着载荷比的增加而增加,实验和数值工作之间的最大差异为 8%。疲劳极限值受孔隙率参数和梯度指数的影响。版权所有 © 2021 国际能源与环境基金会 - 保留所有权利。关键词:应力寿命方法;SN 曲线;加载模式;应力比;疲劳寿命;FEA。1. 简介功能梯度材料 (FGM) 是一类先进材料,其结构特性沿厚度方向分级 [1]。孔隙率梯度是 FGM,其中材料通过部分层的密度或孔径的变化可用于增强其特性。它们可以使用 3D 打印技术用各种材料制成。在金属和聚合物泡沫中可以找到提供轻质和足够机械稳定性能的 PFGM。除其他各种用途外,聚合物还是一种用途广泛且必不可少的材料,可用于能源、航空航天和生物材料,因为它们能有效吸收冲击载荷并控制静态和动态响应,[2]。据估计,90% 的金属部件使用故障都是由疲劳引起的。疲劳过程经历几个阶段,从工程角度来看,将结构的疲劳寿命分为三个阶段比较方便:疲劳裂纹萌生、稳定裂纹扩展和不稳定裂纹扩展 [3]。QS Wang 等人 [4] 研究了功能梯度 Ti-6Al-4V 网状结构在相同体积应力条件下的疲劳行为。研究发现,疲劳裂纹首先萌生在
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。