摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,这主要是因为对这些材料的行为(包括其在受到变幅载荷 (VAL) 时完整性)的了解不足。因此,本研究旨在调查不同层压板取向的 FGRC 的欠载对疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 的结果相比,欠载效应会使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
本研究的目的是通过物理测试和数值模拟,检验复合材料补片在防止裂纹扩展和延长船舶板使用寿命方面的应用。对钢板进行了疲劳试验,以实验验证使用复合材料补片作为防止裂纹扩展和延长结构部件疲劳寿命的手段的有效性。为了证实有限元分析,对使用和未使用复合材料增强材料的样品进行了测试。我们的数值分析研究结果表明,有限元方法可以非常有效地用于准确预测裂纹扩展,特别是对于未修补的钢板。对带有复合材料补片的裂纹板进行数值模拟表明,在测试条件下,使用寿命大约增加了两个数量级,尽管测试结果显示增加量接近一个数量级。差异归因于两个因素:与补片脱粘相关的失效机制和补片本身的实际开裂。因此,至关重要的是实施质量控制的粘合程序,并根据母板的特性和断裂条件优化补片系统的几何形状和特性。
在本技术演讲中,将介绍并简要强调/讨论金属基复合材料或金属基复合材料领域特有的一些显著属性和复杂性,这些复合材料是一种经济实惠且可能可行的金属替代品或替代品,可用于性能关键和非性能关键应用中。将介绍并简要讨论微观结构对铝合金基金属基复合材料的准静态、循环疲劳和最终断裂行为的影响的复杂性。所选铝合金金属基复合材料的试件在单轴拉伸和循环疲劳下均发生变形。循环疲劳试验是在应力控制(高周疲劳)和应变控制(低周疲劳)下进行的。考虑到载荷性质、内在微观结构效应、复合材料微观成分的变形特性和断裂的宏观方面相互竞争和相互作用的影响,将合理化内在微观结构效应和内在微观机制在控制工程复合材料的变形和断裂行为方面的共同影响。
摘要:牙种植体会经历罕见但有问题的机械故障,例如断裂,这些故障最常见的原因是(时间相关的)金属疲劳。本文调查了有关疲劳失效、疲劳识别和种植体在使用过程中的疲劳性能的基本证据。我们首先讨论牙种植体疲劳的概念,首先回顾与此故障机制相关的基本概念。接下来使用扫描电子显微镜识别疲劳失效,以表明此阶段定义得相当明确。我们重申,疲劳失效与种植体设计及其表面状况以及变化很大的使用条件有关。后者的变化程度使得无法设计平均或代表性条件。整个调查都强调了疲劳试验结果的统计性质,以说明从设计角度评估牙种植体疲劳行为的复杂性。当今的牙科植入物疲劳测试仅限于 ISO 14801 标准要求,这可确保认证,但由于要求有限,因此无法为设计目的提供任何见解。我们介绍并讨论了随机谱加载程序,作为在更现实条件下评估植入物性能的替代方案。通过在 0.9% 盐水溶液中进行随机疲劳测试来说明该概念。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,主要是因为对这些材料行为的了解不足,包括它在受到变幅载荷 (VAL) 时的完整性。因此,本研究旨在研究欠载对不同层压板取向的 FGRC 疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 结果相比,欠载效应使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
与镍钛诺(一种名义上的镍和钛的等原子合金)的高周疲劳相关的一个有争议的问题是,有人声称增加施加的平均应变可以增加疲劳寿命,或者至少不会对疲劳寿命产生负面影响,这与绝大多数其他金属材料的报告行为相冲突。为了进一步研究这一点,在 37°C 下对电解抛光医用级镍钛诺进行了弯曲循环疲劳试验,寿命高达 4 亿次应变循环,涉及不同水平的平均应变。通过对疲劳数据的统计分析,开发了一个恒定寿命模型,在有效疲劳应变的 95% 置信水平下具有 90% 的可靠性。我们的结果表明,恒定寿命图(应变幅与平均应变的关系图)对于 4 亿次疲劳载荷循环寿命是单调但非线性的。具体而言,我们发现,与上述说法相反,在零平均应变下,应变幅度极限为 0.55%,以实现 4 亿次循环寿命,可靠性为 90%,置信度为 95%;然而,要在平均应变为 3% 或更高的情况下实现相同的寿命、可靠性和置信度水平,所需的应变幅度极限会降低三倍以上,降至 0.16%。此外,对于平均应变从 3% 到 7% 的情况,在可靠性为 90% 且置信度为 95% 的情况下,允许 4 亿次循环寿命的应变幅度极限约为 0.16%,
致谢 iv 概要 v 目录 viii 表格列表 xi 图表列表 xiii 名词术语 xvi 引言 1 2. 文献综述 5 2.1 抗疲劳设计 5 2.2 应变控制疲劳试验程序 7 2.2.1 历史和理论 7 2.2.2 带钢的应变控制疲劳 14 2.3 制造变量对疲劳性能的影响 15 2.3.1 成分 15 2.3.2 取样位置 17 2.3.3 带钢厚度 17 2.3.4 疲劳性能的各向异性 18 2.3.5 总结及在实验项目中的应用 18 2.4 一般材料性能与疲劳性能之间的关系疲劳性能 19 2.4.1 硬度和抗拉强度性能之间的关系。 19 2.4.2 循环应力-应变性能与抗拉强度性能和硬度之间的关系 20 2.4.3 循环应变-寿命性能与单调抗拉性能和硬度之间的关系 24 2.4.4 微观结构的影响 39 2.5 结论 39 3. 实验设计、材料、技术和结果 41 3.1 实验设计 41 3.1.1 多种钢材的疲劳性能表征 41 3.1.2 制造变量对疲劳响应的影响 42 3.1.3 钢材性能对疲劳响应的影响 45 3.2 材料; 45 3.2.1 钢材的来源和取样 45 3.2.2 钢材的描述 46 3.3 疲劳试验 49 3.3.1 方法 49 3.3.2 结果 53 3.3 微观结构和硬度 55 3.4.1 方法 55 3.4.2
摘要:聚甲醛(POM)纤维是一种新型聚合物纤维,可以改善机场道面混凝土的性能,其对混凝土弯曲疲劳性能的影响是其在机场道面混凝土应用中的一个重要问题。本研究采用普通性能混凝土(OPC)和纤维体积含量为0.6%和1.2%的聚甲醛纤维机场道面混凝土(PFAPC),在四个应力水平下进行了四点弯曲疲劳试验,以研究这些材料的弯曲疲劳特性。采用循环比(n/N)检查弯曲疲劳变形的变化后,进行了弯曲疲劳寿命的双参数威布尔分布检验。然后,考虑各种失效概率(生存率),构建了弯曲疲劳寿命方程。结果表明:POM纤维对机场道面混凝土的静载强度无明显影响,PFAPC与OPC静载强度差异在5%以内;POM纤维可使机场道面混凝土的弯曲疲劳变形能力提高近100%,但对机场道面混凝土的疲劳寿命有不同程度的不利影响,最大降幅达85%。OPC和PFAPC的疲劳寿命均服从双参数威布尔分布,考虑各种失效概率的单、双对数疲劳方程对双参数威布尔分布的拟合程度较高,R2均在0.90以上。PFAPC的极限疲劳强度比OPC低约4%。本次关于POM纤维机场道面混凝土弯曲疲劳性能的研究,对于将POM纤维推广到长寿命机场道面建设具有明显的研究价值。
图 3.6(b):钢 B 的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加。仅获得两个不稳定断裂 ......................................................................................................................................42 图 3.7(a):SMA 焊缝的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加。在 0 o C 时未获得不稳定断裂 .............................................................................................................................43 图 3.7(b):FCA 焊缝的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加....................................................................................44 图 3.8(a):SMA 焊缝的正则化图。破坏性测试结果和非破坏性测试结果的参考温度分别为 -62 o C 和 -48 o C。........45 图 3.8(b):FCA 焊缝的正则化图。破坏性测试结果和非破坏性测试结果的参考温度分别为 -9 o C 和 -49 o C。..........45 图 3.9:钢 A 的标准化图。破坏性试验结果和非破坏性试验结果的参考温度分别为 -77 o C 和 -60 o C.................................46 图 4.1:疲劳试验样品示意图 ......................................................................................50 图 4.2(a):应变应用与时间示意图 .............................................................................51 图 4.2(b):与应变应用相对应的机械磁滞回线(图 4.2(a))。................................................................................................................51 图 4.2(c): 对应于应变循环的 B 场测量(图 4.2a)........................................................52 图 4.3(a): 机械磁滞随循环次数变化的不同阶段.........................................................................................................52 图 4.3(b): 机械磁滞和 B 场的阶段与循环次数的关系.........................................................................53 图 4.4(a): 磁滞损失和 B 场/循环与循环次数的关系(低循环疲劳).........................................................................54 图 4.4(b): 磁滞损失和 B 场/循环与循环次数的关系(高循环疲劳).........................................................................55 图 5.1: 本程序中使用的 MT 样本示意图.............................................................................57 图 5.2: 样本照片,显示一个焊缝上的点焊探针脚趾。另一焊趾经过打磨和锤击处理....................................................................................58 图 5.3:使用 MWM 传感器沿焊缝横向进行的渗透性测量示例.............................................................................58 图 5.4:疲劳试验台上安装有 PD 探头的样本.............................................................................59 图 5.5(a):NPD 读数与循环次数.........................................................................................................60 图 5.5(b):NPD 读数与循环次数(通道 12 和参考探头)....................................................60 图 5.6(a):原始 PD 读数与循环次数(通道 12).........................................................................61 图 5.6(b):原始 PD 读数与循环次数(参考探头).........................................................................61 图 7.1:裂纹扩展仪示意图(CPA 图案).............................................................................67断裂股线与电阻的关系......68 图 7.3(a):在缺口两侧安装两个仪表的中拉伸试样照片.........................................................................................................69 图 7.3(b):疲劳试验装置照片.........................................................................................................69 图 7.4:使用改进和标准安装程序的两个仪表在疲劳试验期间的电压与时间关系图.........................................................................70 图 7.5(a):使用改进安装程序的仪表的电压与时间关系图(图 7.4 的缩放图).........................................................................................71
摘要 烧结材料由于工艺简单而具有生产率优势,但由于强度不足而不适用于高负荷齿轮。为了提高烧结材料的疲劳强度,作者开发了无需二次加工即可实现高密度的液相烧结技术。在本研究中,评估了硼添加量(0-0.4 mass%)对 Fe-Ni-Mo-BC 烧结渗碳材料滚动接触疲劳强度的影响。此外,为了仅评估硼添加效果而不考虑密度的影响,控制每个试样的烧结密度相同。在本研究的测试范围内,硼添加量为 0.1 mass% 的材料滚动接触疲劳极限(p max )lim 表现出最高值,超过了 1700 MPa。该值不仅明显高于无硼材料的(p max )lim(1100 MPa),而且与锻钢的(p max )lim(1900 MPa)相比也是极高的值。从孔隙结构和材料结构两个角度研究了0.1B辊的(p max )lim明显较高的原因。孔隙结构方面,无硼辊的孔隙形状为不规则形状,而0.1B辊的孔隙形状为球形。通过对滚动接触疲劳试验中辊内部的正交剪切应力进行CAE分析的结果发现,0.1B辊孔隙周围的正交剪切应力的最大值比无硼辊低约35 %。该结果表明,0.1B辊比无硼辊更不容易出现裂纹。即,认为0.1B材料的孔隙形状对滚动接触疲劳强度的提高有影响。