a。死亡率,副作用:全方位治疗的人群,定义为所有接受研究药物至少1剂的随机患者。发病率:EQ-5D-VAS和与健康相关的生活质量:b。 COX比例危害模型,由CMV风险组分层(高与低),p值来自Wald测试c。对于10名干预臂中的患者和比较臂中的4例患者,在研究后没有有关生存状况的信息。d。完整的分析设定的人群定义为所有接受研究药物至少1剂的随机患者,并且在治疗开始时中央实验室未检测到CMV病毒血症。e。 Cochran-mantel-Haenszel方法,由CMV风险组分层(高与低),p值来自Wald test f。发生了以下事件:胃肠道疾病(n = 11),肺炎(n = 1)和视网膜炎(n = 2)。k。 RR的IQWIG计算,95%CI(渐近)和P值(无条件精确测试,CSZ方法)h。由于CMV重新激活或CMV疾病i,被用于重新入院的运作。定义为严重程度≥2J的急性GVHD。在评估中考虑了计算效果估计的患者人数;研究开始时的值可以基于其他患者人数。k。考虑到调查时间点l,针对CMV风险组(高与低)调整了CLDA模型。较高(增加)值意味着更好的症状学;积极影响(干预减去控制)意味着干预措施的优势(比例范围为0到100)。n。 COX比例危害模型没有分层,p值来自Wald test o。m。较高的(增加)值意味着更好的健康相关生活质量;积极影响(干预减去控制)意味着干预措施的优势(量表范围:总分0至148点;身体健康,社会/家庭福祉和功能福祉,每个点0至28点;情感福祉0至24点;干细胞移植特异性的量表0至40点)。不考虑CMV感染,CMV病毒血症,GVHD和细菌和/或真菌感染的缩写的事件:CLDA:受约束的纵向数据分析; CMV:巨细胞病毒; Fact -BMT:癌症治疗的功能评估 - 骨髓移植; GVHD:移植物与宿主病;人力资源:危险比; CI:置信区间; N:(至少1个)事件的患者人数; MD:平均差异; MV:平均值; N:评估的患者人数; N.C。:不可计算; N.R.=未达到; RR:相对风险; SD:标准偏差; SE:标准错误; SOC:系统器官类; SAE:严重的不利事件; AE:不良事件VAS:视觉模拟量表
结果:审查了64个接受外周血干细胞移植的医疗记录,CMV阳性30例(46.9%)。他们在2009年至2016年6月之间有PBSCT。平均年龄为34.8±11.14。23例(76.7%)患者接受了同种异体,7(23.3%)接受了自体PBSCT。大多数诊断是急性髓性白血病(AML)(36.7%),急性淋巴白血病(全)(20.0%)和非霍奇金淋巴瘤(16.7%)。移植前CMV免疫球蛋白G(IgG)血清学为29例(96.7%)。PBSCT CMV DNA滴度在16(53.3%)中低较低,而14(46.7%)中的较高。PBSCT后检测CMV阳性的中位持续时间为29天(IQR 14.75-55.75)。有趣的是,25天(83.3%)患者在100天内为阳性。在治疗后24周内,所有患者都有病毒血症的分辨率。PBSCT后1-13个月死亡的三名患者(10%)死亡。PBSCT后32天(IQR 30.75-62.25)中位32天(IQR 30.75-62.25)患有1-5个月的CMV末期疾病(13.3%)。两名患者(6.67%)患有CMV疾病的临床诊断。其他人出现并发症,例如粘膜炎(66.7%)和中性粒细胞减少症(43.3%)。
1。Pocosi D,Antonelli G,Pistello M,Maggi F. Torquetenovirus:从长凳到床边的人类病毒素。临床微生物感染。2016; 22(7):589 -593。2。Doberer K,Haupental F,Nackenhorst M等。扭矩Teno病毒载荷与肾移植受者的亚临床同种异体反应性有关:前瞻性观察试验。移植。2021; 105(9):2112- 2118。3。Schiemann M,Puchhammer -StöcklE,Eskandary F等。扭矩Teno病毒载荷 - 与肾移植后抗体介导的重新结合的逆关联。移植。2017; 101(2):360 -367。4。Strassl R,Doberer K,Rasoul -Rockenschaub S等。扭矩Teno病毒用于急性活检的风险分层 - 在肾脏移植受体中证明了同种异体反应性。J感染。2019; 219(12):1934年-1939。5。Strassl R,Schiemann M,Doberer K等。扭矩Teno病毒病毒血症的定量是肾脏同种异体移植受体中传染病的前瞻性生物标志物。J感染。2018; 218(8):1191- 1199。6。Gottlieb J,Reuss A,Mayer K等。肺移植后(Vigilung)研究方案的病毒负荷 - 引导性免疫抑制。试验。2021; 22(1):48。7。Haupenthal F,Rahn J,Maggi F等。试验。2023; 24(1):213。8。Thaunat O.道教研究。9。Am J移植。一项多中心,患者和评估者盲目的,非下等,随机和受控的II期试验,以比较肾脏移植接受者的标准和扭矩Teno病毒的免疫抑制,在移植后的第一年:TTVGuideIT:TTVGUIDEIT。(个人通讯,2023年10月20日)。Doberer K,Schiemann M,Strassl R等。扭矩TENO病毒用于肾移植受体中移植物排斥和感染的风险分层 - 一项前瞻性观察试验。2020; 20(8):2081- 2090。10。gorzer I,Haupental F,Maggi F等验证血浆扭矩TenO病毒载荷,该病毒载量施加了CE认证的PCR,用于肾脏移植后的排斥和感染的风险分层。J Clin Virol。2023; 158:105348。11。Jaksch P,GörzerI,Puchhammer -StöcklE,BondG。固体器官移植中的综合免疫监测:通向Teno Teno病毒 - 引导性免疫抑制的道路。移植。2022; 106(10):1940年 - 1951年。12。Maggi F,Pifferi M,Fornai C等。急性呼吸道疾病儿童的鼻分泌物中的 TT病毒:与病毒血症和疾病严重程度的关系。 J Virol。 2003; 77(4):2418 -2425。 13。 Regele F,Heinzel A,Hu K等。 在肾脏移植受体中停止霉酚酸2周,疫苗接种不会增加对SARS -COV -2疫苗接种的反应,这是一项非随机,受控的先导研究。 前药。 2022; 9:914424。 14。 Benning L,Reineke M,Bundschuh C等。TT病毒:与病毒血症和疾病严重程度的关系。J Virol。2003; 77(4):2418 -2425。13。Regele F,Heinzel A,Hu K等。 在肾脏移植受体中停止霉酚酸2周,疫苗接种不会增加对SARS -COV -2疫苗接种的反应,这是一项非随机,受控的先导研究。 前药。 2022; 9:914424。 14。 Benning L,Reineke M,Bundschuh C等。Regele F,Heinzel A,Hu K等。在肾脏移植受体中停止霉酚酸2周,疫苗接种不会增加对SARS -COV -2疫苗接种的反应,这是一项非随机,受控的先导研究。前药。2022; 9:914424。14。Benning L,Reineke M,Bundschuh C等。定量扭矩Teno病毒负载,以监测肾脏移植受体免疫抑制治疗的短期变化。移植。2023; 107:e363 -e369。15。Bischof N,Hirsch HH,Wehmeier C等。首先降低钙调神经酶抑制剂,用于治疗肾脏移植后的BK多瘤病毒复制:长期结局。肾词表盘移植。2019; 34(7):1240-1250。16。Ginevri F,Azzi A,Hirsch HH等。对多瘤病毒BK复制的前瞻性监测和在小儿肾脏受体中空虚的干预的影响。Am J移植。2007; 7(12):2727- 2735。
基孔肯雅病毒通过被感染的伊蚊属蚊子叮咬传播给人类。主要为埃及伊蚊和白纹伊蚊。蚊子在吸食感染性宿主时会被感染。人类通常在出现症状前不久和最初 2-6 天内出现病毒血症。大约 3%–28% 的基孔肯雅病毒感染者将保持无症状状态。对于出现症状的人,潜伏期通常为 3-7 天(范围为 1-12 天)。疾病最常见的特征是突然发高烧(体温 >102°F [39°C])和关节疼痛。发烧通常持续≤1 周。关节症状可能很严重,使人虚弱。关节疼痛最常发生在双手和双脚,但也可能影响更多近端关节。其他症状可能包括结膜炎、头痛、肌痛、恶心、呕吐或皮疹。皮疹通常为斑丘疹,在发烧后出现,涉及躯干和四肢,但也可能包括手掌、脚底和面部。基孔肯雅病的急性症状通常在 7-10 天内消退。一些患者在急性病发作后的几个月内会出现风湿病症状复发(例如多关节痛、多关节炎、腱鞘炎、雷诺综合征)。研究报告显示,患病数月或数年后,5% 至 80% 的患者会出现持续性关节疼痛和长时间疲劳。感染导致的死亡事件时有发生,但很少见,老年人和合并症患者更易出现。
摘要:尽管现代抗逆转录病毒疗法在控制病毒转录和明显的病毒相关发病率方面非常有效,但由于前病毒整合到长寿命的储存细胞中,它无法完全根除感染宿主体内的逆转录病毒。因此,免疫缺陷病毒感染患者必须终生接受抗病毒治疗,以控制病毒血症、病毒传播和感染相关发病率。不幸的是,患者很难持续接受终生抗病毒治疗,并且可能与治疗特异性发病率有关。患者权益倡导者一直在呼吁采用新方法来实现逆转录病毒根除。作为一项概念验证研究,我们在一系列体外实验中采用了慢病毒传递的 RNA 定向基因编辑策略,试图降低猫免疫缺陷病毒 (FIV) 前病毒载量、病毒转录和感染性病毒体的产生。我们发现,用 FIV 特异性成簇规律散布短回文重复序列 (CRISPR) 相关蛋白 9 (Cas9) 基因编辑工具处理的猫 T 淋巴细胞系 (MCH5-4) 导致无细胞病毒 RNA 相对于对照细胞减少。两步 FIV 感染研究证实了感染潜力降低 — 用从 FIV 感染和 CRISPR 慢病毒处理的细胞中收获的无细胞 FIV 感染的幼稚 MCH5-4 细胞的整合前病毒 DNA 少于对照细胞。这项研究代表了朝着开发一种有效的在免疫缺陷病毒感染宿主中根除原病毒的方法迈出的初步步伐。
接种牛结节性皮肤病 (LSD) 疫苗对于维持动物健康和养殖的经济可持续性至关重要。由减毒活 LSD 病毒 (LSDV) 组成的同源疫苗或由减毒活羊痘或山羊痘病毒 (SPPV/GPPV) 组成的异源疫苗均可用于控制 LSDV。尽管基于 SPPV/GTPV 的疫苗的效力略低于减毒活 LSDV 疫苗,但它们不会引起疫苗诱导的病毒血症、发烧和接种后的临床疾病症状,这些症状是由减毒活 LSDV 的复制能力引起的。长期以来,人们一直认为野外羊痘病毒会重组,直到在俄罗斯发现了一种天然存在的重组 LSDV 疫苗分离株,而俄罗斯只使用羊痘疫苗。这是在 2017 年邻国启动使用 LSDV 疫苗的疫苗接种运动之后发生的,当时记录了首例疑似疫苗样分离株传播病例,同时在现场检测到了重组疫苗分离株。本文介绍的后续结果显示,在 2015 年至 2018 年期间,俄罗斯 LSDV 的分子流行病学分为两个独立的浪潮。2015-2016 年的疫情可归因于现场分离株。而 2017 年的疫情,尤其是 2018 年的疫情代表了新的疾病输入,与 2015-2016 年的现场入侵没有遗传学关联。这表明是新出现的,而不是现场疫情的延续。由于重组疫苗类 LSDV 分离株似乎已跨越国界,使用某些活疫苗的政策需要根据其所带来的生物安全威胁进行修改。
Tucaresol:一种具有两种不同抗病毒机制的临床阶段口服候选药物。Christopher L. Penney*、Boulos Zacharie**、Jean-Simon Duceppe*** 摘要:自 1981 年艾滋病疫情爆发以来,全球约有 8600 万人感染艾滋病毒,目前全球约有 3900 万人感染该病毒。然而,艾滋病毒感染者数量分布不均,全球三分之二的感染者集中在撒哈拉以南非洲地区。由于病毒对药物具有耐药性,最有效的治疗方法需要三种药物联合使用,从而增加了治疗的复杂性和成本。因此,许多艾滋病毒感染者或有感染风险的人无法预防或治疗这种可能致命的疾病。艾滋病毒无法治愈[1]。Tucaresol 是一种口服临床阶段药物,通过保护或重建 CD4+ T 辅助免疫细胞发挥宿主靶向抗病毒作用。我们在此报告,Tucaresol 还表现出对感染 HIV 的人外周血单核细胞的体外活性。尽管这种体外抗病毒活性并不强,但 Tucaresol 出色的安全性和生物利用度以及低分子量支持在人体内达到相关药物浓度以实现显著的体内活性。先前报道的 1b/2a 期 HIV 临床试验中病毒血症稳定证明了这一点 [2]。Tucaresol 的显著体内活性可能来自 CD4+ T 辅助细胞的共刺激和对病毒感染细胞的直接活性之间的协同作用。Tucaresol 的全体外病毒筛选进一步揭示了对人类疱疹病毒 6B、人乳头瘤病毒 11、麻疹病毒和乙型肝炎病毒的弱而直接的抗病毒活性。关键词:Tucaresol、HIV、T 辅助细胞、CD4 受体。 ---------------------------------------------------------------------------------------------- * ChemThera Sciences 联合创始人。联系方式:clpenney09@gmail.com
最有效的虫媒病毒疫苗之一是 1937 年研发的针对黄热病 (YF) 的 YFV-17D 减毒活疫苗。这种疫苗在蚊子体内复制能力较差,因此不会通过媒介传播。疫苗短缺主要是由于基于无病原体胚胎卵的生产受限,这促使赛诺菲转向基于生物反应器中连续细胞系培养的最先进工艺的替代方法。vYF-247 是基于 17D 的下一代减毒活疫苗候选物,适合在无血清 Vero 细胞中生长。对于新疫苗的开发,世卫组织建议记录蚊子的传染性和复制能力。我们用 vYF-247 疫苗感染埃及伊蚊和白纹伊蚊,首先与 YF-17D-204 参考赛诺菲疫苗(Stamaril 和 YF-VAX)和临床人分离株 S-79 进行比较,后者以 6.5 Log ffu/mL 的滴度提供在血粉中,其次与临床分离株进行比较,滴度增加至 7.5 Log ffu/mL。在感染后的不同天数,通过分别量化蚊子腹部、头部和胸部或唾液中的病毒颗粒来评估病毒的复制、传播和传播。虽然无法将 vYF-247 与参考疫苗进行比较以得出显著结果,但我们发现,与最高接种剂量的临床菌株 S-79 相比,vYF-247 并未通过两种伊蚊物种(无论是实验室菌株还是现场收集的种群)传播。再加上接种疫苗者体内检测到的病毒血症水平低于或等于低水平,因此,蚊子传播 vYF-247 疫苗的可能性极小。
摘要:猪瘟是一种高度传染性和致命性的猪病。接种一种被称为“中国”(C)毒株的减毒病毒可以有效控制这种疾病。接种一次 C 毒株疫苗后几天内即可完全保护猪免受高毒性分离株的侵害,使其成为有史以来最有效的兽用疫苗之一。C 毒株的缺点是无法通过血清学区分接种疫苗的动物和感染野生型猪瘟病毒的动物。此前,开发了一种基于 C 毒株的疫苗,该疫苗的 E2 结构糖蛋白稳定缺失,可以区分感染动物和接种疫苗的动物(DIVA)。我们将所得疫苗命名为 C-DIVA,它与商业 E2 ELISA 兼容,经过修改后适合用作 DIVA 测试。在目前的研究中,三组八只小猪接种了剂量逐渐增加的 C-DIVA 疫苗,并在接种两周后进行攻击。一组四只未接种疫苗的小猪作为对照。在攻击后三周内,监测小猪的临床症状,并采集血液样本以监测病毒血症、白细胞和血小板水平以及抗体反应。研究了口咽拭子中攻击病毒 RNA 的存在,以首次了解 C-DIVA 预防脱落的潜力。结果表明,一次接种 70 个 C-DIVA 传染性病毒颗粒可保护猪免受高毒性布雷西亚毒株的侵害。
猪群特征所有动物均在兽医的监督和照料之下,饲料、水和环境均符合丹麦环境与食品部的要求。饲养员每天监测猪及其环境。所有饲料配给的量均达到或超过猪的正常营养建议。遗传系为长白-约克夏-杜洛克,所有猪均来自同一群母猪。该研究于 2015 年 12 月至 2016 年 4 月在 PCV2 阳性的丹麦育肥猪群中进行,该猪群每年出栏 20,000 头猪。在研究之前,丹麦技术大学哥本哈根国家兽医研究所通过定量聚合酶链式反应 7 分析,通过中等水平的病毒血症 (4 至 6 log 10 PCV2 拷贝/毫升) 确认了活动性 PCV2 感染。该农场共有 8 个房间,每个房间有 16 个双栏,每个栏养 36 到 38 头猪。采用液体饲料系统,两个相邻的单栏共用一个饲料槽(双栏)。饲料转化率 (FCR) 是一个结果参数,因此双栏是研究的统计单位。为简单起见,双栏统计单位在下文中称为栏。在研究期间,标准的农场程序包括房间的全进全出管理、猪抵达时根据体重和性别进行分类,以及在抵达后 5 天开始使用泰乐星(Aivlosin;Salfarm Danmark A/S)进行为期 3 天的治疗,以对抗胞内劳森菌
