摘要:微藻可以分别利用大气中的二氧化碳和阳光作为碳源和能量来源,产生工业相关的代谢物。开发用于高通量基因组工程的分子工具可以加速产生具有改良性状的定制菌株。为此,我们开发了一种基于 Cas12a 核糖核蛋白 (RNP) 和同源定向修复 (HDR) 的基因组编辑策略,以产生微藻 Nannochloropsis oceanica 的无疤痕和无标记突变体。我们还开发了一种基于附加质粒的 Cas12a 系统,用于在目标位点有效地引入插入/缺失。此外,我们利用 Cas12a 处理相关 CRISPR 阵列的能力来执行多路复用基因组工程。我们在一次转化中有效地靶向宿主基因组中的三个位点,从而朝着微藻的高通量基因组工程迈出了重要一步。此外,还开发了一种基于 Cas9 和 Cas12a 的 CRISPR 干扰 (CRISPRi) 工具,用于有效下调目标基因。我们观察到在 N. oceanica 中用 dCas9 执行 CRISPRi 后,转录水平降低了 85%。总体而言,这些发展大大加速了 N. oceanica 的基因组工程工作,并可能为改良其他微藻菌株提供通用工具箱。关键词:Nannochloropsis、微藻、基因组编辑、CRISPR-Cas、基因沉默、核糖核蛋白、Cas9、Cas12a ■ 介绍
Aureus Volvox EHR。人类地(NOTH)Shihira的Shihira和坠毁的CraulsdönnzGrach Tetraedron(Reinsch)Hansg最低四重奏(A. Br)hansg hansg hansg hansg korsikov terrobulastic Tetraedron(Renesch。)hansg。tumulgor四卫(Reinsch)Hans oocystaceae孤立性。愤怒的焦虑。循环单磷酰(NYGAARD)NYGAARD水理网状(L)网状lagerh。双工踩踏变量。亚晶raCib Pediatum(Ehrenb)A。Br。 键入pedest(ehrenb)ralfs。 儿科测试。 fritsch。 至关重要的十字无限(Wolle)O。Kuntze。 异性和北海峡。) 云。 史密斯的史密斯(Chod)GM Smith。 Armatus场景。 bicaudatus(gugelmet)场景Mus cadal-authentics chdodat。 kutz的Dimorphth。 长场景 oblycils(turp)kutz。 穿孔方案var。 主要(Turner)Cob。 nov。场景Quadrica。 渴望(Chod)G.M Smith。 场景Quadraspiina Chodad。 史密斯史密斯。 Rabenhorst的亚ulotrichales。 班级CLS俱乐部(Linn)Kutz。亚晶raCib Pediatum(Ehrenb)A。Br。键入pedest(ehrenb)ralfs。儿科测试。fritsch。至关重要的十字无限(Wolle)O。Kuntze。异性和北海峡。)云。史密斯的史密斯(Chod)GM Smith。Armatus场景。bicaudatus(gugelmet)场景Mus cadal-authentics chdodat。kutz的Dimorphth。长场景oblycils(turp)kutz。穿孔方案var。主要(Turner)Cob。 nov。场景Quadrica。 渴望(Chod)G.M Smith。 场景Quadraspiina Chodad。 史密斯史密斯。 Rabenhorst的亚ulotrichales。 班级CLS俱乐部(Linn)Kutz。主要(Turner)Cob。nov。场景Quadrica。渴望(Chod)G.M Smith。场景Quadraspiina Chodad。史密斯史密斯。Rabenhorst的亚ulotrichales。班级CLS俱乐部(Linn)Kutz。
摘要 颗石藻是现代海洋中最丰富的钙化生物,是许多海洋生态系统中重要的初级生产者。它们产生碳酸钙板(颗石藻)细胞覆盖层的能力在海洋生物地球化学和全球碳循环中发挥着重要作用。颗石藻还通过产生影响气候的气体二甲基硫醚在硫循环中发挥着重要作用。颗石藻研究的主要模式生物是 Emiliania huxleyi,现名为 Gephyrocapsa huxleyi。G. huxleyi 分布广泛,占据全球沿海和海洋环境,是现代海洋中最丰富的颗石藻。对 G. huxleyi 的研究已经确定了颗石藻生物学的许多方面,从细胞生物学到生态相互作用。从这个角度来看,我们总结了使用 G. huxleyi 取得的关键进展,并研究了这种模式生物的新兴研究工具。我们讨论了研究界需要采取的关键步骤,以推动 G. huxleyi 作为模式生物的发展,以及其他物种作为颗石藻生物学特定方面模型的适用性。
我们正在研究“微藻对CO 2固定的研究和开发”和有用化学物质的生产”。在这个项目中,我们通过将微藻的发展与高CO 2融合的发展结合使用基因组编辑育种技术和高生产力的质量培养方法来开发一种紧凑且高度有效的微藻种植系统,旨在在中等和大型构成工厂和大型商品和大型工厂中固定,旨在使用高度有效的质量培养方法。此外,我们的目标是通过利用CO 2固定微藻来建立可持续的碳回收技术,以生产高价值增强的功能化学物质,例如岩藻糖果蛋白和EPA,以及通过将功能成分作为生物塑料的原始材料后使用残留物。
摘要:脂质体在抗癌药物输送和肿瘤靶向治疗方面表现出良好的应用前景。然而,复杂的肿瘤微环境和传统脂质体的性能限制限制了其临床转化。透明质酸(HA)修饰的纳米脂质体可有效靶向CD44过表达的肿瘤细胞。联合治疗可增强治疗效果并延缓耐药性。在此,我们利用薄膜分散法开发了人参皂苷化合物K(CK)和HA共修饰的紫杉醇(PTX)脂质体。与胆固醇(Ch)相比,CK 显著提高了包封效率和稳定性。体外释放研究揭示了pH响应行为,在pH 7.4 时释放较慢,而在pH 5 时释放较快。体外细胞毒性试验表明,在修饰脂质体中用CK 代替Ch 会显著降低HCT-116 细胞活力。此外,流式细胞术和荧光显微镜显示,CD44 高细胞对 PTX-CK-Lip-HA 的细胞摄取率更高,这反映在下半部分最大抑制浓度中。总体而言,CK/HA 修饰脂质体代表了一种创新的靶向递送系统,可通过 pH 触发的药物释放和 CD44 结合来增强肿瘤治疗。
密歇根州环境、大湖和能源部 (EGLE) 的水生有害生物控制 (ANC) 计划负责管理州内水域的化学处理,以控制水生有害植物和藻类。这包括使用水生除草剂、除藻剂、佐剂和水染料。水生物种可能包括各种形式的藻类(浮游藻、丝状藻和大型藻类,如轮藻和星状轮藻)、沉水植物(即位于水下的植物,如狐尾藻、眼子菜和大叶水草)、浮叶植物(如百合、水莼菜)、自由漂浮植物(如浮萍、欧洲青蛙草)和挺水植物(如香蒲、灯心草、芦苇)。项目工作人员依据《自然资源与环境保护法》 1994 PA 451 (经修订)第 33 部分“水生危害控制” (国家水资源保护法)、《国家水资源保护法》第 31 部分“水资源保护” 以及据此颁布的行政法规颁发许可证。
随着全球抗击气候变化加剧的努力,微藻作为一种未充分利用但有希望的资源而脱颖而出。新的研究强调了微藻作为抵抗气候变化的解决方案的能力,但研究人员警告说,“智能微藻生物培训”需要释放其全部潜力。
摘要。Mahmudi M,Arsad S,Lusiana ED,Musa M,Fitrianesia F,Ramadhan SF,Arif AR,Savitri FR,Dewinta AA,Ongkosongo AD。2023。印度尼西亚东爪哇省Pasuruan和Sidoarjo沿海地区不同栖息地特征的微藻多样性。生物多样性24:4418-4426。微藻是生活在各种栖息地中的微观真核生物。这项研究的目的是确定几个亚藏人中微藻的类型和丰度,包括沉积物,红树林,水柱和人造底物;并分析影响丰度微藻的环境因素。这项研究是在印度尼西亚东爪哇省帕苏鲁安和西多尔霍的沿海地区的多个地点进行的。使用目的抽样方法应用了一种定量描述方法。使用净用于浮游微藻的净和采样图收集样品。使用NMD(非金属多维缩放)对微藻进行分组,并使用CCA(规范对应分析)分析了微藻丰度与水质参数之间的关系。结果表明,在所有研究地点都发现了芽孢杆菌科,氰基科和叶绿体类别,但是trebouxiophyceae和dinophyceae仅在帕苏鲁安海滩发现。在Sidoarjo的Wughoyo Beach的沉积物栖息地中发现了最高的微藻,并以706,605 Ind。cm -2。CCA分析表明,在所有部位都发现了芽孢杆菌科,表明其适应性很高。两个沿海地区的多样性,均匀性和优势指数范围为1.43-2.61; 0.71-0.96;和0.06-0.27。使用NMDS的相似性分析表明,这三个站点之间没有相似性,这表明每个位点都有很高的微藻变化。该分析的结果表明,特定栖息地具有独特的微藻多样性,因此保留多种栖息地类型很重要。