摘要:植物在遭受非生物胁迫时会产生和积累抗逆物质,这涉及一种蛋白质转化机制,即分解逆境损伤的蛋白质并提供可用的氨基酸。真核生物的蛋白质周转主要由泛素化途径驱动。在蛋白质降解所需的三种酶中,E3泛素连接酶在大多数细胞中起着关键作用,因为它决定了泛素化的特异性并选择要降解的靶蛋白。在本研究中,为了研究OsPUB7(水稻的植物U-box基因)的功能,我们构建了CRISPR/Cas9载体,生成OsPUB7基因编辑个体,并使用基因编辑株系评估对非生物胁迫的抗性。在缺乏T-DNA的T 2 OsPUB7基因编辑无效株系(PUB7-GE)中观察到干旱和盐分胁迫处理的抗逆表型。此外,尽管 PUB7-GE 在 mRNA 表达分析中没有显示出任何显著变化,但它显示出比野生型 (WT) 更低的离子泄漏和更高的脯氨酸含量。蛋白质-蛋白质相互作用分析表明,已知与胁迫有关的基因 (OsPUB23、OsPUB24、OsPUB66 和 OsPUB67) 的表达在 PUB7-GE 中增加,并通过与 OsPUB66 和 OsPUB7 形成 1 节点网络,充当干旱和盐胁迫的负调节剂。这一结果证明 OsPUB7 将成为水稻育种和未来抗旱/非生物胁迫研究的有用目标。
Pendrin (SLC26A4) 是一种阴离子交换剂,可介导碳酸氢盐 (HCO 3 − ) 与氯化物 (Cl − ) 的交换,对于维持肾脏、肺和耳蜗的 pH 值和盐分稳态至关重要。Pendrin 还会将碘化物 (I − ) 输出到甲状腺中。人类的 Pendrin 突变会导致 Pendred 综合征,从而引起听力丧失和甲状腺肿。抑制 pendrin 是减轻哮喘气道高反应性和治疗高血压的一种有效方法。然而,阴离子交换的机制及其药物抑制作用仍然知之甚少。我们应用低温电子显微镜确定了 Sus scrofa 中 pendrin 在 Cl − 、I − 、HCO 3 − 或脱辅基状态下的结构。结构显示每个原体中都有两个阴离子结合位点,功能分析表明两个位点都参与阴离子交换。这些结构还显示了硫酸盐转运蛋白和抗西格玛因子拮抗剂 (STAS) 与跨膜结构域之间的相互作用,突变研究表明其具有调节作用。我们还确定了 pendrin 与镍氟酸 (NFA) 的复合物的结构,揭示了一种通过与阴离子结合竞争并阻碍阴离子交换所需的结构变化而实现的抑制机制。这些结果为理解阴离子选择性和交换机制及其受 STAS 结构域调控提供了方向。这项工作还为分析与 Pendred 综合征相关的突变的病理生理学奠定了基础。
摘要本研究旨在获取生姜粉和盐对发酵非洲蝗虫种子(Parkia biglobosa)微生物负荷的比较效果。在存储时确定发酵豆样品中的微生物负荷。The results showed that the locust bean seeds (plain) without any preservatives have 5 5 5 5 5 high microbial load of (6.8x10 )Cfu/g and (6.5x10 ) Cfu/g, (8.5x10 ) Cfu/g and (7.2x10 )Cfu/g, (8.8x10 ) and 5 (7.4x10 ) Cfu/g in week zero, 1 and 2 respectively with no growth of fungi.在第1周的零周中,盐分揭示的TVC和TCC为4.3x10和2.4x10 cfu/g,在第1周,TVC和TCC为5 5 5 5 6.5x10 cfu/g和4.3x10 cfu/g,而第2周的第2周的TVC为3.8x10和TCC,TVC和4.3x10 cfu/g是很多,而TCC的数量太大。 在零周中用姜粉保存的发酵非洲蝗虫种子是TVC 5 5 5 5 5.2x10和第1周的TCC 4.8x10,TVC和TCC为3.3x10 cfu/gand 5.2x105,而第2周的总可行数量和大肠杆菌的总数和总体可行的数量和总数过多,无法计数。 鉴于上面的结果,与普通的蝗虫种子和加入姜粉相比,添加盐浓度来保存parkia biglobossa种子几乎没有微生物负载数。 结果暗示,盐是蝗虫种子的最佳防腐剂,用于更长的保质期,如果将姜提取物用作防腐剂,则应连续添加盐,以防止许多微生物Count Parkia Biglobossa种子的生长。在第1周的零周中,盐分揭示的TVC和TCC为4.3x10和2.4x10 cfu/g,在第1周,TVC和TCC为5 5 5 5 6.5x10 cfu/g和4.3x10 cfu/g,而第2周的第2周的TVC为3.8x10和TCC,TVC和4.3x10 cfu/g是很多,而TCC的数量太大。在零周中用姜粉保存的发酵非洲蝗虫种子是TVC 5 5 5 5 5.2x10和第1周的TCC 4.8x10,TVC和TCC为3.3x10 cfu/gand 5.2x105,而第2周的总可行数量和大肠杆菌的总数和总体可行的数量和总数过多,无法计数。 鉴于上面的结果,与普通的蝗虫种子和加入姜粉相比,添加盐浓度来保存parkia biglobossa种子几乎没有微生物负载数。 结果暗示,盐是蝗虫种子的最佳防腐剂,用于更长的保质期,如果将姜提取物用作防腐剂,则应连续添加盐,以防止许多微生物Count Parkia Biglobossa种子的生长。在零周中用姜粉保存的发酵非洲蝗虫种子是TVC 5 5 5 5 5.2x10和第1周的TCC 4.8x10,TVC和TCC为3.3x10 cfu/gand 5.2x105,而第2周的总可行数量和大肠杆菌的总数和总体可行的数量和总数过多,无法计数。鉴于上面的结果,与普通的蝗虫种子和加入姜粉相比,添加盐浓度来保存parkia biglobossa种子几乎没有微生物负载数。结果暗示,盐是蝗虫种子的最佳防腐剂,用于更长的保质期,如果将姜提取物用作防腐剂,则应连续添加盐,以防止许多微生物Count Parkia Biglobossa种子的生长。
苏打湖是具有高碱度和盐分的独特聚会环境,尽管具有极端的性质,但仍支持各种微生物群落。在这项研究中,使用Amplicon测序确定了三个苏打湖,阿比亚塔湖,Chitu湖和沙拉湖的样品中的原核和真核微生物多样性。与培养的分析显示,所有三个苏打湖中原核和真核微生物群落的多样性都比以前报道的要高。通过非依赖性的扩增子测序发现了总共3,603个原核生物和898个真核操作分类单元(OTU),而只有134个细菌Otus仅通过丰富的培养物获得3%。这表明在实验室条件下只能培养这些栖息地的微生物的一部分。在三个苏打湖中,来自奇图湖的样品显示出最高的原核多样性,而沙拉湖的样品显示出最低的多样性。Pseudomonadota ( Halomonas ), Bacillota ( Bacillus , Clostridia ), Bacteroidota ( Bacteroides ), Euryarchaeota ( Thermoplasmata , Thermococci , Methanomicrobia , Halobacter ), and Nanoarchaeota ( Woesearchaeia ) were the most common prokaryotic microbes in the three soda lakes.鉴定出高度多样性的真核生物,主要由Ascomycota和basidiomycota代表。与其他两个湖泊相比,在阿比亚塔湖(Lake Abijata)发现了更多的真核OTU。本研究表明,这些独特的栖息地具有多种微生物遗传资源,并可能在生物技术应用中使用,应通过功能性宏基因组学进一步研究。
日益加剧的气候波动威胁着世界粮食安全,因为这些是限制农业生产的非生物和生物胁迫的主要驱动因素(Rosenzweig 等人,2014 年)。非生物胁迫,例如过冷或过热、降水或干旱以及土壤盐分或钠化,是植物在应对气候变化时经历的一些最常见的胁迫类型(Ashraf 等人,2018 年;Barmukh 等人,2022 年;Soren 等人,2020 年;Varshney、Barmukh 等人,2021 年)。温度波动,尤其是极寒天气,可能导致小麦(Triticum aestivum)、水稻(Oryza sativa)和玉米(Zea mays L.)等主要谷类作物遭受寒害。这些作物要么天生不适应这种寒冷条件,要么没有专门为这种寒冷条件培育(Dolferus,2014;Janksa 等人,2010;Solanke 等人,2008)。在零度以下的条件下,细胞内或细胞外都会形成冰晶,生物膜通透性会发生变化,并产生活性氧 (ROS)。这些变化导致了一系列症状,例如发芽困难、幼苗活力下降或生长受阻、叶片变小、叶片变黄枯萎、分蘖减少、根系增殖不良、植物水分关系紊乱、养分吸收受阻、抽穗过早、种子败育增加、种子大小减小,从而导致产量下降 (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et al., 2015 ; Oliver et al., 2002 ; Wang et al., 2013 )。
盐分是限制沿海滩涂土地利用的首要因素,根际微生物在增强作物抗逆性方面发挥着至关重要的作用,对环境变化高度敏感。水稻(Oryza sativa L.)是盐渍土改良的首选作物。本研究通过高通量测序技术,对不同盐胁迫处理下水稻根际土壤微生物群落进行了研究。研究发现,盐胁迫改变了水稻根际土壤细菌群落多样性、结构和功能。盐胁迫显著降低了水稻根际土壤细菌群落的丰富度和多样性。盐胁迫下,细菌群落中绿弯菌门、变形菌门和放线菌门丰度较高,厚壁菌门、酸杆菌门和粘球菌门相对丰度降低,拟杆菌门和蓝藻门相对丰度增加。水稻根际土壤细菌群落功能主要有化学异养、好氧_化学异养、光能营养等,其中化学异养和好氧_化学异养NS3(基土中添加3‰NaCl溶液)处理显著高于NS6(基土中添加6‰NaCl溶液)处理。本研究为开发水稻专用耐盐微生物菌剂提供了理论基础,为利用有益微生物改善滨海盐渍土土壤环境提供了可行的策略。
摘要:越来越关注越来越多的抗生素 - 抗抗生素细菌的出现,迫使需要搜索和开发药物来对抗这些微生物。这与寻找低成本合成方法的搜索是阐述这项工作的动机。存在于Pinus Elliotti var的树脂中埃利奥蒂(Elliotti)用于通过盐分生成钠盐。合成途径是低成本的,仅在没有有毒有机溶剂的轻度温度下进行两个反应步骤,以及在工业规模上易于生态友好且易于进行。Abietate(Na-C20H29O2)的特征是质谱,红外光谱,元素分析,X射线衍射,扫描电子显微镜和能量分散光谱。要执行抗菌测试,进行了最小抑制浓度和盘扩散测定法的测定。获得的结果表明,盐na abietate对细菌菌株进行了抗小体作用。金黄色金黄色葡萄球菌,大肠杆菌,单一细胞增生菌和肠孢子虫和肠孢子虫和酵母菌C. c. bick。与标准的抗微生物四环素相比,磁盘扩散试验显示出对肠链球菌的抑制潜力很高,因为发现抑制指数为1.17。对于其他细菌菌株,抑制值高于40%。MIC测试在抑制大肠杆菌,单核细胞增生菌和白色念珠菌方面显示出令人鼓舞的结果,表明针对第一微生物的抑菌活性以及针对其他微生物的杀菌性和杀真菌活性。因此,结果表明,NA Abietate作为一种可能的有效抗菌药物的作用,强调了其在循环经济中的可持续性。
在高盐土壤和水域中,在这些生态系统中存活的微生物除了限制生存率的任何其他因素外,还必须处理过多的盐。卤素和卤代微生物使用各种策略来维持其细胞膜渗透平衡,并防止细胞质水的损失。在这些策略中,包括蛋白质和RNA/DNA影响的分子水平的修改,盐水适应性,兼容溶质适应性以及盐稳定的细胞表面和膜。由于其生理适应性,卤素/卤代微生物具有巨大的不同应用潜力。研究主题“适应卤素/盐油微生物及其应用”包括有关在各种鱼类中使用盐油和卤素微生物的审查和原始研究文章,包括农业,药物,药物,药品,工业,工业,食物,食品,食品和诸如水分的杂物化处理。卤素和卤素微生物已经开发了多功能分子机制来应对盐分胁迫,许多这些分子适应性在生物技术中都有潜在的应用。在这种情况下,Zhou等人。通过比较基因组分析探索了六型pontixanthobacter和Allopontixanthobacter中盐油耐受性的机制。直接连接到助效的基因包括参与渗透液合成,膜通透性控制,离子传输,细胞内信号传导,多糖生物合成和SOS响应的基因。类似的基因含量先前已在其他细菌中进行了描述,因此增强了这些想法,即这些是解释晕耐的主要机制。作者正在将这些细菌的全基因组共发生,遗传多样性和生理特征联系起来。
ABI 农业企业孵化器 ADG 助理总干事 AEO 农业推广官员 AFOLU 农业、林业和其他土地使用部门 AgIn Agrinnovate 印度有限公司 AI 人工智能 AICRP 全印度协调研究项目 AICTE 全印度技术教育理事会 a-IDEA 农业创业创新发展协会 ANOVA 方差分析 APLDA 安得拉邦畜牧业发展局 APMC 农产品市场委员会 APSIM 农业生产系统 sIMulator ARS 农业研究站 ASEAN 东南亚国家联盟 ASPIRE 创新研究企业科学追求协会 ASRB 农业科学家招聘委员会 ATARI 农业技术应用研究所 BESTIU 印度工程科技创新大学 BIG 生物技术点火基金 BIRAC 生物技术产业研究援助委员会 CBC 能力建设委员会 CBU 能力建设单位 CCSMC 催化资本支持管理委员会 CCVEC 兽医继续教育和交流中心 CDC 职业发展中心 CGIAR 国际农业研究磋商小组农业研究 CHIRPS 气候危害组 红外降水与站点数据 CII 印度工业联合会 CIL 科罗曼达尔国际有限公司 CIPHET 中央收获后工程与技术学院,卢迪亚纳 CLD 因果回路图 COLLAgE 农业教育终身学习中心 CSIR 科学与工业研究理事会 CSKHPKV CSK 喜马偕尔邦 Krishi Vishwavidyalaya CSSRI 中央土壤盐分研究所 CTO 首席技术官 DBT 生物技术部 DPR 家禽研究局 DRDL 国防研究与发展实验室 DSSAT 农业技术转让决策支持系统
摘要:小麦是世界上最重要的主食作物之一,其遗传改良对于满足不断增长的人口的全球需求至关重要。然而,气候变化加剧的环境压力和耕地面积的不断恶化使得满足这一需求变得非常困难。鉴于此,小麦对非生物胁迫的耐受性已成为遗传改良的一个关键目标,这是一种在不增加耕地面积的情况下确保高产的有效策略。与现代农业相关的遗传侵蚀,即高产小麦品种是高选择压力的产物,这降低了整体遗传多样性,包括可能有利于适应不利环境条件的基因的等位基因多样性。这使得传统育种成为一种效率较低或速度较慢的产生新抗逆小麦品种的方法。无论是挖掘不适应的大型种质库的多样性,还是产生新的多样性,都是主流方法。基因工程的出现为创造新的植物变异提供了可能性,其应用为传统育种提供了强有力的补充。转基因和基因组编辑等基因工程策略为改善栽培品种具有重要农学意义的环境耐受性提供了机会。至于小麦,全球有数个实验室已成功培育出具有增强的非生物胁迫耐受性的转基因小麦品系,而且最近,用于小麦基因组内靶向变异的 CRISPR/Cas9 工具也取得了显著改进。鉴于此,本综述旨在提供基因工程应用的成功案例,以改善小麦对干旱、盐分和极端温度的适应性,这些是最常见和最严重的事件,导致全球小麦产量损失最大。