本文介绍了一种独立直流微电网中与存储设备共享的能源管理方法。管理的目的是满足能源需求,同时保证生产/消耗平衡,并具有良好的直流母线电压调节和稳定性。该能源管理方法的另一个优点在于通过计算公共直流母线上的有效功率来考虑静态转换器中的损耗。所提出的控制策略利用非线性控制,结合模糊逻辑控制来从光伏和风能源中提取最大功率,同时使用滑模控制来控制存储功率转换器。公共直流母线功率流的控制使母线电压具有良好的稳定性,在期望值附近的偏差很小,从而限制了电池应力,因为低频电流分量被发送到电池,而高频功率分量被导向超级电容器。仿真结果证明了所提出的能源管理和控制策略的有效性。
摘要。本文介绍了一种增强的能源管理策略,该策略采用了带有光伏(PV)模块的独立直流微电网中电池的电荷状态(SOC)。有效的能源管理对于确保微电网中负载单元的不间断电源至关重要。解决了外部因素所带来的挑战,例如温度波动和太阳辐照度的变化,可以部署能源存储系统,以补偿外部因素对PV模块输出功率的负面影响。所提出的方法考虑了微电网元素的各种参数,包括来自来源的可用功率,需求功率和电池SOC,以开发具有负载拆分能力的有效能量控制机制。通过考虑这些参数,该策略旨在优化可用资源的利用,同时确保可靠的连接负载电源。电池的SOC在确定最佳充电和排放曲线方面起着至关重要的作用,从而在微电网内实现了有效的能量管理。为了评估所提出方法的有效性,设计了算法并进行了模拟。所提出的算法通过结合功率和基于SOC的方法来有效控制来利用混合方法。通过分析仿真结果,发现所提出的方法能够传递预期的负载功率,同时以预定的SOC水平增加电池的生命周期。
Agilent Technologies 8904A 多功能合成器采用最新的 VLSIC 技术,从六种基本波形创建复杂信号。标准 8904A 以数字方式合成精确的正弦波、方波、三角波、斜波、白噪声和直流波形,并将这些信号路由到单个输出。选件 001 增加了三个相同的内部合成器(通道),它们可以调制第一个合成器或与输出相加。可以为每个合成器独立设置频率、幅度、波形、相位和目标。通道 A 可用的调制类型包括 AM、FM、FM、DSBSC 和脉冲调制。选件 002 增加了第二个 50 Ω 输出,为双通道应用提供了第二个独立信号。选件 003 为 8904A 添加了快速跳频和数字调制功能。选件 005 允许多个 8904A 进行相位同步,以满足需要使用多个 8904A 的应用。选件 006 将 8904A 的输出 1 从 50 Ω 浮动输出更改为 600 Ω 高功率平衡输出。使用此选项,8904A 可以将 10 伏特有效值电压输出到 600 Ω 负载,频率范围从 30 Hz 到 100 kHz 以上。所有这些独特功能使 8904A 成为 VOR、ILS、FM 立体声和通信信号等要求苛刻的应用的强大工具。
摘要。在许多应用中引起了硅化的形成,尤其是在微电子中的接触形成和互连。在此主题上发表了一些评论,本章的目的是通过重点关注新的实验结果来提供这些评论的更新。本章在理解主要机制(扩散/反应,成核,横向生长…)方面给出了一些进展(即在4至50 nm之间)。提出了有关硅质形成机制的最新实验结果,并将其与模型和/或模拟进行比较,以提取与反应性扩散相关的物理参数。这些机制包括成核,横向生长,扩散/界面控制生长以及扩散屏障的作用。几种技术的组合(包括原位技术(XRD,XRR,XPS,DSC)和高分辨率技术(APT和TEM)被证明是必不可少的,这对于在薄膜中的固态反应中获得了理解,并更好地控制这些反应以在微电机设备或其他应用程序中接触或其他应用。
摘要。高温超导体(HTS)非常有吸引力的高效和高能量密度功率设备。它们与需要轻型和紧凑型机器(例如风力发电)的应用特别相关。在这种情况下,为了确保超导器机器的正确设计及其在电力系统中的可靠操作,那么开发可以准确包含其物理功能但也可以正确描述其与系统的相互作用的模型很重要。为了实现这样一个目标,一种方法是共同模拟。这种数值技术可以通过有限元模型(FEM)带来机器的细几何和物理细节,同时处理整个系统的操作,该系统包含了机器,以及由外部电路代表的电网的子集。当前工作的目的是在涉及超导组件时使用这种数值技术。在这里,提出了一个案例研究,该案例研究涉及通过整流器及其相关滤波器与直流电流(DC)网络耦合到直流电流(DC)网络的15 MW杂交超导同步发电机(HTS转子和常规定子)。与风能应用有关的案例研究允许在使用与HTS机器的共同模拟时抓住技术问题。发电机的FEM是在商用软件COMSOL多物理学中完成的,该商品通过内置功能模拟单元(FMU)与电路模拟器Simulink进行交互。因此,它是在本研究中,引入了最新版本的最新版本J-与均化技术结合使用的配方,与T -A公式相比,计算时间更快。分布式变量和全局变量,例如前者和电压,电流,电磁扭矩以及后者的功率质量的电流密度,磁通量密度和局部损失,并进行了比较。这个想法是在计算速度,准确性和数值稳定性的标准下找到最适合的组合FEM电路。
储能系统 (ESS) 可以提高可再生能源占比较高的电力系统的服务可靠性。本文介绍了一种可以将 ESS 直接集成到 HVDC 系统中的转换器拓扑。该拓扑由一个储能子模块 (ES-SM) 分支和一个电感器组成。ES-SM 基于半桥,通过直流/直流转换器连接到超级电容器或电池。该拓扑可扩展到不同的电压水平,并且由于储能元件分布在所有子模块中,因此它提供了高度的冗余。在这项工作中,转换器拓扑使用平均模型建模,其控制旨在调节注入的直流功率和 ES-SM 的能量。还提供了拓扑主要元素的初步尺寸。模拟表明,ES-SM 既可以从 HVDC 系统注入和吸收功率,同时保持 ES-SM 电容器中的所需能量。
简介:治疗记忆障碍对神经心理学家来说是一个巨大的挑战,他们越来越多地将非侵入性大脑刺激与传统的认知训练相结合。这项荟萃分析(在 PROSPERO 注册:CRD42023460773)研究了阳极经颅直流电刺激 (a-tDCS) 对进行性和非进行性脑损伤患者记忆的影响。材料和方法:从公开数据库中确定符合条件的随机对照研究 (RCT)。两名独立审阅者使用 Cochrane 标准评估偏见风险,并计算记忆结果的 Hedges' g 系数值。结果:分析中使用了 22 项 RCT(23 项实验,577 名参与者)的数据。一些研究的方法学质量存在轻微担忧。大多数实验在背外侧前额叶皮质上使用主动 a-tDCS,平均电流密度为 0.1 mA/cm²。效果大小分析显示短期记忆(g = 0.58,95% CI = 0.27-0.88)和延迟回忆(g = 0.45,p < 0.001,95% CI = 0.23-0.67)有显著改善。双侧刺激与整体效果显著相关,但人们对出版偏见和研究异质性表示担忧。亚组分析显示,与延迟回忆(g = 0.45 和 0.44)相比,短期记忆的效应大小略大(渐进组和非渐进组分别为 g = 0.4 和 0.72)。结论:A-tDCS 对各种神经系统疾病的记忆都有小到中等的积极影响。然而,由于样本量小、统计功效低、以及分析数据可能存在出版偏见,现在认可 a-tDCS 作为标准神经心理干预的可靠辅助手段还为时过早。
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
本论文讨论的另一个重要主题是 IGBT 模块的状态监测。为此,开发了一个功率循环测试台。选择 𝑉 𝐶𝐸(𝑜𝑛) 作为跟踪功率器件在整个循环测试过程中退化状态演变的参数。因此,构思并开发了一个在线 𝑉 𝐶𝐸(𝑜𝑛) 测量板。为了获得有关所应用循环协议的更多相关见解,开发了一种在线估计 IGBT 器件结温的策略,该策略基于卡尔曼滤波器的使用。该策略还能够通过分析热敏电参数来估计 IGBT 健康状态的退化程度。
软开放点(SOP)(SOP),也称为软点,通常是电源电子转换器,用于电源分配网络中,与传统的正常开放点(NOP)和正常截断点(NCP)相比,可以实质上改善对功率流的控制,如图1所示。径向(通常打开)和网格(通常关闭的)分销网络都有几个优点和缺点。径向网络很简单,但不是很可靠。相反,网格网络提供一定程度的冗余,以在发生故障时继续电源,但需要更复杂的保护安排[1-2]。因此,SOP是设计混合网络的最佳候选者,在该网络中可以根据实际的网络条件实际切换到radial层转换为网状,反之亦然。SOP可以控制主动和反应幂的流动,并调节分布网络不同节点之间的电压。它们也可以用于更改网络的配置,以提供由故障隔离的负载,或者在网络中的一个进料器上隔离不良和故障,而不是减轻对其他馈线的故障。以前的技术文献已经彻底介绍了中型电压发电网络的SOP的不同结构和控制方法,并证明了网络操作的改进[3-5]。但是,到目前为止,尚未对铁路和分销网络之间的SOP技术应用。此外,电气铁路这两个网络都将受益于更集成的设计,特别是:i)减少功率损失,ii)在场景中保存电网稳定性,其局部可再生能源(RES)高渗透率,iii)电动汽车(EVS)的充电站(EVS),电气能源和优先人。