与焊接海洋结构相关的环境载荷和结构几何形状通常会产生多轴应力。大型焊接细节已用于表征海洋结构中的多轴疲劳响应;然而,这些测试的成本通常过高。对多轴疲劳文献进行了审查,以确定可用于预测多轴疲劳响应的分析技术。确定并总结了各种方法。参考了支持文献。在可用的情况下介绍了多轴方法的可靠性(偏差和散度)。确定了影响多轴疲劳响应的各种因素。以焊接细节为例,展示了如何从单轴疲劳测试数据中获得多轴疲劳寿命预测。最后,建议进行研究以促进多轴疲劳研究向海洋结构的技术转移。
与焊接海洋结构相关的环境载荷和结构几何形状通常会产生多轴应力。大型焊接细节已用于表征海洋结构中的多轴疲劳响应;然而,这些测试的成本通常过高。对多轴疲劳文献进行了审查,以确定可用于预测多轴疲劳响应的分析技术。确定并总结了各种方法。参考了支持文献。在可用的情况下介绍了多轴方法的可靠性(偏差和散度)。确定了影响多轴疲劳响应的各种因素。以焊接细节为例,展示了如何从单轴疲劳测试数据中获得多轴疲劳寿命预测。最后,建议进行研究以促进多轴疲劳研究向海洋结构的技术转移。
2024年7月25日 — 5项标准及测试项目。见附表。 6 一般事项。(1)需提交的文件。见附表。 合同 ...
我们的旅游业促进了我们城市的经济增长,也促进了社区的福祉。我们希望游客在离开时能更加欣赏堪培拉,感到充实、受教益,并愿意向他人介绍这里提供的优质、多样化体验。我们还希望游客认为我们的城市和地区是一个适合居住、学习、工作和投资的好地方,享有进步、包容和欢迎所有人的美誉。
摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
DNA2VEC载体。单词嵌入被广泛用于自然语言处理(NLP),可使用固定长度向量有效地将单词映射到高维空间中[19]。这个概念也已应用于DNA序列[20]。在这项研究中,我们利用了预训练的单词向量来嵌入DNA序列。我们通过窗口大小m(m = 3)和步长s(s = 1)进行长度n的DNA样本,然后获得长度m xi∈{x 1,x 2,x 3,...,x n-2}的N-2 DNA序列。每个X I可以在衍生自DNA2VEC的预训练的DNA载体基质中找到[21]。我们使用ei∈Rk来表达缝隙I序列的k(k = 100)维矢量,然后将我们的序列x i转换为e ei∈{e 1,e 2,e 3,...,e n-2}。最后,对于每个长度n的样本,它可以嵌入为:e 1:n -2 = e1⊕e2 e 2 e 2⊕e n -2(1),其中⊕表示串联算子。
AXISCADES 是 ER&D 领域的一家全球技术公司,专注于利基市场,在以下方面拥有高端能力: 数字转型套件 嵌入式系统 数据分析 数据科学 人工智能和机器学习 AXISCADES 涵盖 ER&D 项目的整个生命周期,从需求规范和设计到工业化流程实施,满足高性能要求并确保复杂技术数字产品的可靠性。 真正的全球性业务,为多元化的忠实客户提供服务,这些客户都是其市场的领导者。 该公司拥有 17 个办事处,主要在印度、欧洲和北美运营
摘要 人体的每个器官都有自己的微生物群,眼睛作为一个复杂的多组分器官也不例外。由于传统研究方法的局限性,对眼部微生物组 (OM) 的详细研究直到 2010 年才作为眼部微生物组项目的一部分开始,当时研究方法的进步使得获得详细数据成为可能,尽管之前一直存在争议,即微生物是否能够附着在眼部表面——具有抗菌特性的泪膜层上。眼球表面的结构由角膜、结膜、泪腺及泪膜、睑板腺以及睑板膜组成;它们共同对抗刺激物、过敏原和病原体。眼部微生物群的稳态对于维持视觉器官的健康至关重要。大多数微生物位于角膜和结膜上,包括16S rRNA测序在内的现代研究方法已经能够确定眼表微生物群的“核心”,并确定最常见的类型:葡萄球菌、棒状杆菌、丙酸杆菌和链球菌,尽管“核心”的具体组成仍然存在争议。 MB的组成受多种因素影响,包括年龄、佩戴隐形眼镜、服用眼科药物和抗生素。与许多其他器官一样,眼表面的微生物群受到肠道微生物群的影响:这种联系被称为“微生物-肠道-眼睛”轴。在肠眼轴内,健康的肠道微生物群会产生短链脂肪酸、吲哚、多胺和其他对免疫系统和视网膜健康有益的物质。菌群失调会导致体内平衡被破坏,而炎症反应的加剧会导致视神经受损和眼部疾病的进展。一些眼科疾病,如糖尿病视网膜病变、年龄相关性黄斑变性、脉络膜新生血管、葡萄膜炎、原发性开角型青光眼、干燥综合征和干眼症,可能与肠道微生物组成的变化有关。使用各种方法纠正肠道菌群失调可以降低患眼疾的风险,尽管还需要进一步研究来发现沿“微生物-肠道-眼”轴治疗眼科疾病的新方法。