摘要 - 研究表明,使用存根载荷技术,UWB-MIMO天线元件之间的相互耦合减少。提出的2×2 UWB天线几何形状由两个圆形的单极辐射器组成,其部分地面可与完美的阻抗匹配。存根为20 mm×0.2 mm,在接地平面的两个天线元件之间插入以改善分离率。脱钩的存根导致相互耦合的降低少于20 dB。以10 GHz的选定频率以10 GHz的频率测量确认了全向辐射模式。出现了不同的MIMO天线度量,例如通道容量损失(CCL),平均有效增益(MEG),总活动反射系数(TARC),包膜相关系数(ECC)和表面电流。设计注意事项的详细信息以及仿真和测量结果进行了介绍和讨论。所提出的MIMO天线阵列可以非常适合UWB应用。
在过去几年中,使用腔量子量子电动力学效应,即真空电磁场来修饰腔中的材料特性。但是,仍然存在稀缺的一般结果,这些结果为直观的理解和局限性提供了可以实现哪种效果的指南。我们为低能量物质激发之间的有效相互作用提供了这样的结果,或者通过它们相互耦合与腔电磁(EM)线场或通过耦合与夫妇与EMFIELD的介体模式相互耦合或间接相互作用。我们证明了诱导的相互作用本质上是纯粹的静电,因此由零频率评估的EM Green函数完全描述。我们的发现表明,使用一个或几个空腔模式减少模型可以轻松产生误导性结果。
极限周期振荡器之间的同步可以通过夹带到外部驱动器或通过相互耦合而产生。在经典同步系统中研究了两种机制之间的相互作用,但在量子系统中没有研究。在这里,我们指出,由于量子系统中的相位拉力和相位排斥,这两种机制之间的竞争与合作可能发生。我们在集体驱动的简并量子热机器中研究它们的相互作用,并表明这些机制可以根据机器的工作方式(冰箱或发动机)进行配合或竞争。夹带 - 单位同步相互作用持续存在,退化水平的数量增加,而在退化的热力学极限中,相互同步主导。总体而言,我们的工作研究了量子同步的退化和多级缩放的效果,并显示了不同的同步机制如何在量子系统中进行合作和竞争。
引人入胜的物理现象,例如从材料的个体基本成分的特性之间的微妙相互作用,它们的相互耦合和系统的整体对称性中出现了凝结物质中的电导,磁性或超导性。有趣的是,如果一个人在不同的实验系统中实现这些成分的主,则可以再现这些物理现象。这种模拟系统的优点是,它可能比自然系统更容易控制和探测,并且可以提供超越自然界中存在的可能性。在本演讲中,我将解释如何将光捕获在使用纳米技术实现的耦合小腔阵列中,并提供了一个多功能的模拟平台来模仿凝结物质现象。在田地进行一般介绍之后,我将展示如何在石墨烯单层中模仿苯分子中的光特性,甚至可以变成超流体。我将展示对基本物理现象的深刻理解,这些模拟模拟可以构想出用于综合光子学的新型光子设备。
同质 FRET 过程依赖于供体发射和受体吸收之间的光谱重叠。只有当 QD 彼此足够接近时,才会发生这种情况。这就是我们添加 APTES 将它们聚集成簇的原因。因此,从小波长到大波长的相关能量转移导致 QD 群体的发射带红移。从现象学上讲,这种红移类似于我们在胶体悬浮液中增加 QD 浓度时观察到的红移。在这种情况下,QD 不会聚集且不会相互耦合,因此它们无法实现同质 FRET。然而,鉴于它们的高浓度,内滤波效应 (IFE) 开始发挥作用。每个 QD 仍然发光,但会显著吸收其他 QD 的光。这是一种纯粹的集体自吸收现象,在整个 QD 群体的规模上,依赖于吸收和发射之间的光谱重叠 [3]。给定等式。 (S13),同源 FRET 可以正式描述为一种统计现象,涉及整个 QD 群体的吸收 A (λ) 和发射光谱 I 0 (λ) 之间的有效重叠,方式与 IFE 类似,只要 ∆ S ≳ δλ ,即 A (λ) ≈ I 0 (λ + ∆ S) 在重叠的光谱范围内(见图 S2)。出于这些原因,我们在此建议,首先,计算由于内滤波效应(IFE)引起的红移,其次,将结果推断到形式上类似的同源 FRET 情况。
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
摘要:流化床反应器中 CaCO 3 的循环碳化-煅烧不仅提供了捕获 CO 2 的可能性,而且可以同时用于热化学能量存储 (TCES),这一特性将在未来发挥重要作用,因为不可调度可变发电(例如风能和太阳能)的份额将不断增加。本文对同时进行 TCES 和 CO 2 捕获的工业规模钙循环 (CaL) 工艺进行了技术经济评估。该工艺假定通过出售可调度电力和向某个附近的排放者提供 CO 2 捕获服务来获利(即不考虑 CO 2 的运输和储存)。因此,该工艺与附近的另外两个设施相连:一个可再生的不可调度能源,用于为储存器充电;一个工厂,用于捕获烟气流中的 CO 2,同时释放储存的 CO 2 并产生可调度的电力。该工艺可以在室温下长期储存而不会产生任何显著的能量损失,本文根据特定边界条件下的给定每日能量输入来确定其尺寸,这些边界条件要求充电部分每天稳定运行 12 小时,而放电部分每天 24 小时提供稳定输出。先计算不同工艺要素的相互耦合质量和能量平衡,然后确定主要工艺设备的尺寸,最后通过文献中广泛使用和验证的成本函数计算该工艺的经济性。通过盈亏平衡电价 (BESP)、回收期 (PBP) 和每吨二氧化碳捕获成本来评估该工艺的经济可行性。本研究不包括可再生能源的成本,但评估了其如果纳入系统对工艺成本的潜在影响。还评估了计算成本对主要工艺和经济参数的敏感性。结果表明,根据最现实的经济预测,不同规模的工厂的 BESP 成本在 141 至 -20 美元/MWh 之间,使用寿命为 20 年。当将同一过程评估为碳捕获设施时,其成本在 45 至 -27 美元/吨 CO 2 捕获之间。流化床反应器的投资成本占计算资本支出的大部分,而提高碳酸化器转化率被认为是降低全球成本的一项重要技术目标。
自量子光学诞生之初,人们就知道光学状态的非经典特性(如压缩、反聚束和纠缠)易受衰减影响 [1]。通过衰减器(有损通道)传播时,光学状态的量子特征与环境共享,并在追踪环境时丢失。因此,人们长期以来一直努力减少制备和操纵这些状态时的损失,以增强其在量子信息处理 [2]、量子计量 [3] 和其他应用中的实用性。在本文中,我们挑战了这一范式,展示了一类非经典纠缠光态,它们不仅可以在衰减介质中传播而不受损失的影响,而且是由于这些损失而产生的。也就是说,任何其他状态进入并传播通过该介质后,都会转换为该家族中的状态。我们将这些状态称为光学暗态( OD ),类似于原子的暗态,原子的暗态虽然与原子跃迁共振,但不吸收光。与原子暗态类似, OD 态出现在 Λ 形原子系统中。两个基态通过两对场以类似拉曼的方式相互耦合。在每对场中,一个场是量子,另一个场是强激光(图 1 ( a ))。通过这种方式,量子场直接与原子基态相互作用:模式 ˆ a 下光子的吸收会将光子从能级 ∣ ñ 1 转移到能级 ∣ ñ 2 ,而模式 ˆ b 具有相反的效果。当两种模式都充满光子时,这些过程会叠加发生。此外,如果这些模式的状态是具有特定压缩参数(由光学模式和物质之间的有效耦合常数之比决定)的双模压缩真空(TMSV),则这两个过程会发生干涉相消,从而有效地阻止原子态和光学态的相互作用。然后,即使基态相干性衰减,该 OD 态也会在这种原子的气体中传播而不会发生任何损失或演变。这里研究的现象的物理与 [ 4 , 5 ] 的物理密切相关,其中两个宏观原子集合的纠缠是由耗散现象驱动的。事实上,正如我们在下面展示的,它们是产生光和原子纠缠态的相同的过程。
摘要:该项目为电动汽车(EV)提供了动态的无线充电系统,将Arduino Uno MicroController作为主要控制器。该系统具有嵌入在车道基础设施中的发射器(TX)线圈,并安装在车辆单元中的接收器(RX)线圈,在运动中可以连续充电。通过电磁诱导将能量从TX线圈无线传递到RX线圈。Arduino Uno微控制器充当中央控制单元,管理电力传输,监视充电状态和调节电压水平。集成的物联网(IoT)传感器可实时数据收集有关充电参数和电池健康,提高效率和安全性。该系统的效率水平达到67%,同时提供安全性,可靠性,较低的维护和较长的产品寿命。关键字:无线电源传输;电动汽车;电感动力传递;电池充电等I.引言世界遭受了许多没有电力的问题。在日常生命中,电力在许多应用中很重要,例如移动,笔记本电脑,相机,传感器,仿生植入物,卫星和油平台。在1891年,尼古拉·特斯拉(Nikola Tesla)提出了无线功率传输的想法,他展示了第一个用于照明的无线电源传输系统[1]。有时在小电源插座上连接太多电线会变得不方便和危险。托马斯·帕克(Thomas Parker)在1884年实际实施的第一辆电动汽车。在主要源和二级负载之间有一个较大的空气间隙。直到1859年可充电电池都无法用于储存电力,法国物理学家加斯顿工厂发明了铅酸电池并减少了缺点。电动汽车在许多国家 /地区更受欢迎,电动汽车尺寸很小,例如公共汽车,汽车大,两轮车,电动自行车很小。电动汽车与普通车辆相同,但是电动汽车用于推进目的中,用于电动机电池的电源[1]。与常规的铅酸电池相比,可用的新型可充电电池可用,因此可以使用较小的电池,而储能容量也更高,并且重量也较小。充电过程对于插入电动汽车的用户来说是笨重的,因为要为电池充电,需要从车辆直接连接的充电器,或者有时电池已卸下用于充电目的。通过利用电感功率传输技术,简化了困难的充电过程[1]。电感功率传递(IPT)方法是设计是通过从静态发射器到一个或多个可移动的次级接收器来无线传递电源[1] - [7]。根据电源要求,电源是单相或三个阶段。WPT系统通常由电源,发射器(主要线圈),接收器(次级线圈),微控制器,电池,传感器,匹配电路组成[8]。取决于线圈IPT系统的磁性结构是分布的或集结的拓扑结构。AC电流是通过电源以非常低的频率在发射器线圈中产生的。通过磁场单主要线圈和多个二级线圈耦合。主要线圈中的恒定频率电流正在为WPT创建一个强大而可控的磁场。电力电子技术的进步已经发现了许多基于IPT系统的新应用,例如用于专业仪器的无线电源,在大空气间隙上为电动汽车的无线电池充电,材料处理这些是IPT系统的高功率应用[1] - [7]。其他示例包括医疗植入物,手机,照明这些是IPT系统的低功率应用[1] - [7]。IPT系统的相互耦合通常为一周。接收器线圈从发射器线圈中电离,并沿着长发射器轨道移动。IPT系统的优点在下面列出,[1] - [7],[10],