a。一个新的非出口储能系统;或b。一个新的非出物系统,包括储能和太阳PV;或c。一个新的非出口储能系统添加到了现有的非出口生成设施中。2。代表符合条件的开发人员连接到电路的十(10)个非出口通知项目之一;和3。生成设施包括承销商实验室(UL)认证的电源控制系统(PC),开放循环响应时间为两秒钟或更短,并将其设置为非出口模式;和4。与使用独立仪表的120伏或240伏服务相互连接;和5。不在PG&E电气系统的网络次要部分;和6。以不会增加客户峰负荷的方式运行;和7。包括PG&E预先批准的逆变器;和8。安装,当连接到具有120/240伏特二次电压的单相变压器时,汇总的总输出将在240伏特服务的两个阶段之间进行实用;和9。由PG&E先前批准的合格开发人员安装。请参阅PG&E的电力规则21和计划关税,以确定互连生成设施的特定要求。在此通知表中使用的大写条款,本文没有其他定义的术语,其含义应与PG&E规则21和规则1中所定义的含义相同。
摘要。柔性、超轻、超薄——印刷电子产品的未来!这项发展的基石是导电油墨和粘合剂,它们将组件和传感器相互连接,并将它们集成到印刷环境中。在此,功能性油墨等先进材料及其在最终设备中的相互作用起着决定性的作用,这些设备可用于各种用途。为此,创建了纳米范围内的各种粒子结构,以实现所需的导电性,同时将导电物质的材料输入保持在尽可能低的水平。由于优异的性能、多功能性、可能的高产量和相关的降低的生产成本,印刷电子产品促进了广泛的应用,并使其大众市场变得触手可及。因此,相关的环境影响以及供应链的安全性预计将在未来变得更加重要。然而,由于大多数流程都处于开发阶段,如果印刷电子产品的开发要与可持续发展目标保持一致,那么在开始生产之前进行前瞻性评估是必不可少的。为了在早期阶段解决未来印刷电子先进材料实施对环境的影响,本贡献在产品和材料开发开始之前就考虑并评估了其可持续影响。为此,我们开发了一个程序,其中的基本方法使开发工程师能够在早期阶段识别热点,并尽早解决和缓解这些热点。这样,明天的循环经济的挑战今天就得到了解决,并且可以避免关键的可持续性陷阱。
混合量子经典计算基础架构是研究用例的有趣场景和研究,以便最好地使用当前的量子硬件。这种方法允许使用CPU和GPU基础架构和算法最有效地使用现有的量子硬件。目标演示的目标是介绍多个QPU+CPU+GPU混合量子量子计算集成和用例。位于远端端的量子 - 经典计算测试台 - Poznan超级计算和网络中心(PSNC)办公室和SC24场地将与专用的经典直接链路相互联系,该连接在量子加密后(PQC)和量子密钥分布(QKD)技术的基础上均可确保其固定。在长距离链接上,数据将由PQC算法加密,并在PSNC Office和Short QKD链接中本地进行SC24场地。此设置将展示分布式混合量子基础架构如何工作以及如何从计算认证和安全性的角度与最新的PQC和QKD Technologies相互连接。PQC算法将使用经典的DWDM服务和加密发电机确保长距离链接加密。在本地,作为最后一英里解决方案,链接可以通过QKD技术直接确定并与本地网络数据传输(例如MacSec服务)集成。这样的分布式环境将实施来自不同领域的许多用例
昆虫构成了Metazoa物种最富含物种的辐射,这是由于主动飞行的演变而成功。与翼龙,鸟类和蝙蝠不同,昆虫的翅膀不是从腿1演变而来的,而是通过生物力学复杂的铰链连接到体内的新型结构,可将特殊动力肌肉的微小,高频振荡转化为旋转式背后运动2。该铰链由一个称为硬化的细小结构的系统组成,这些系统通过柔性关节相互连接,并受专门对照肌肉的活性进行调节。在这里,我们使用遗传编码的钙指示剂对这些肌肉的活性进行了成像,同时用高速相机跟踪机翼的3D运动。使用机器学习方法,我们创建了一个卷积神经网络3,该网络3可以准确地从转向肌肉的活动中预测机翼运动,以及一个预测单个硬化物在机翼运动中的作用的编码器4。通过在动态缩放机器人苍蝇上重播机翼运动模式,我们量化了转向肌肉活动对空气动力的影响。一种基于物理的模拟,结合了我们的铰链模型,生成了与自由飞行苍蝇非常相似的飞行操作。这种综合性的多学科方法揭示了昆虫翼铰链的机械控制逻辑,可以说是自然界中最复杂和最重要的骨骼结构之一。
本文概述了金融互联网的愿景:多个金融生态系统相互连接,就像互联网一样,旨在通过将个人和企业置于其金融生活的中心来增强个人和企业的能力。它提倡以用户为中心的方法,降低金融服务和系统之间的障碍,从而促进所有人的访问。设想中的系统利用代币化和统一账本等创新技术,以强大的经济和监管框架为基础,大幅扩大金融服务的范围和质量。这种整合旨在促进更多参与,提供更加个性化的服务,提高速度和可靠性,同时降低最终用户的成本。实现这一愿景所需的大部分技术都已存在,并在世界各地的努力推动下迅速改进。本文为如何整合互操作性、可验证性、可编程性、不变性、最终性、可演化性、模块化、可扩展性、安全性和隐私性等关键技术特征以及如何嵌入各种治理规范提供了蓝图。实现这一愿景需要公共当局和私营部门机构之间的积极合作。该文件呼吁这些实体采取行动,建立坚实的基础。这将为在数字时代建立以用户为中心、统一和普遍的金融生态系统铺平道路,这个生态系统具有包容性、创新性、参与性、可访问性和可负担性,不会让任何人掉队。
摘要:在下一个未来,我们将在日常生活中包围着许多相对便宜的计算设备,配备了无线通信和感应,并以“ Pervasive Intelligence”的概念为基础,在这些基础上,我们可以从这些基础上设想出我们的未来世界作为所有事物的Internet(Iot/IoE)(Iot/IOE)(Iot/IOE),而消费者/IOT/IOT/IOE IOT/IOE IOE和ioe ioe and Industrial and Industrial Iot and ioe and iotial iot iot iot iot iot。实际上,物联网是具有无限应用潜力的技术范式,它越来越成为能够提高企业竞争力,公共行政部门效率和生活质量的现实。在过去的几年中,已经开发了许多IOT启发的系统,并且应用领域已经扩展和深刻发展:智能家居,智能建筑,智能计量,智能工厂,智能汽车,智能汽车,智能环境,智能农业,智能农业,智能农业,智能物流,智能物流,生命环保,智慧零售和智能健康。物联网无线传感器节点的关键所需特征之一是它可以自主从能量收集(EH)进行自主操作的能力,而不是依靠寿命有限的笨重电池。此外,对于许多上述场景,可以预见可穿戴的解决方案,以进一步增加物联网范式的普遍扩散,从而使许多设备和个人相互连接。成功开发成功的RF自主系统(可能可穿戴)的关键字如下:
电话:(513) 658-0874 教学理念在培养未来的科学家方面,我的理念是教他们科学!S. 科学素养:我相信为未来的科学领袖配备科学素养,使他们能够以一定的好奇心识别和判断适当的科学专业知识。C. 同理心:我教授同理心的重要性,并以同理心倾听跨学科的科学观点。I. 健康不平等:我相信每门课程都有机会探讨健康不平等的根本原因以及消除这些不平等的迫切需要。E. 体验式:我的教学方式非常体验式,努力创造一种互动体验,不仅仅是我传授信息,还引导学生自己发现信息。N. 创新:我鼓励学生思考科学界现存问题的新解决方案。 C. 连接:在当前的在线学习环境中,我为学生创造相互连接和交流的机会。E. 参与:我探索超越是/否答案的领域,促进参与和参与,邀请学生“上台”分享或主持讨论。我的个人理念是与学生保持联系,负责及时和公平的评分,准确教授和传达内容,并适应不断变化的环境。教育 2017 博士学位 流行病学(分子) 辛辛那提大学 2007 工商管理硕士 泽维尔大学 2003 工商管理学士 辛辛那提大学 1999 社会学学士 辛辛那提大学 博士后培训
带有物联网的神经传感 助理教授 Ms.Varamahalakshmi.O 1、Hema R 2、Mrudula TS 3、Nishkala S 4、Thirumala Samhitha KM 5 工学学士 4 年级 印度 SJCIT 电信工程系 1 varu.o92@gmail.com、2 hemarajanna123@gmail.com、3 mrudulats58@gmail.com 4 nishkalas73488@gmail.com、5 tsamhitha30@gmail.com 摘要 随着技术的进步,与电器交互的方式也在不断进步。本文提出了一种脑机接口 (BCI),用于调节日常家用电器,从基于简单机械开关的电器控制到基于物联网的无线控制设施。该技术包括 EEG 设备,用于获取与大脑活动和通信协议相关的信号。将 BCI 和 IoT 相结合以实现“远程控制”是一项很有前途的新兴技术,它通过轻松访问、自动化和优化电视机、交流灯泡等家用电器,使家庭环境变得舒适。除此之外,通过云服务器实时监测大脑活动在教育和医疗领域发挥着重要作用,分别用于监测学生的注意力和注意力水平以及监测昏迷患者的大脑活动。[12][7][1] 关键词——脑机接口 (BCI)、物联网 (IoT)、脑电图 (EEG) I. 引言 根据调查,人脑由无限多个神经元相互连接组成。它们通过发送一些由电荷组成的电脉冲相互通信。这些电荷产生一定量的力来产生具有不同电势的电场。我们的头皮约为 (微伏)。该微电压可以被传感器和电极感应到。传感器或
摘要:可再生能源是未来几年的希望,因为它们在自然界中储量丰富,而且免费提供。此外,这些能源无污染,是化石燃料的完美替代品。混合动力系统 (HPS) 是一种具有多个发电源的系统,如光伏 (PV) 系统、风力涡轮机、燃料电池等,它们相互连接以提供电力,以满足有/无储能备份的不同需求。本文集中于可再生能源系统的控制和集成自动化,即光伏系统、固体氧化物燃料电池 (SOFC) 与镍氢 (Ni-MH) 电池以及可变负载。建议的 HPS 主要侧重于使用 100% 清洁的光伏,发电时不会产生有毒排放。在这里,太阳能光伏系统通过算法提取最大功率,作为 HPS 中的主要供应贡献者,以满足可变负载需求。如果光伏系统电力供应不足,则利用镍氢电池/固体氧化物燃料电池的电力来满足不断变化的负载需求。另一方面,如果光伏系统电力供应过剩,则多余的能量将储存在镍氢电池中。为了实现有效的供需平衡,HPS 利用各种控制策略,即比例积分 (PI) 和自适应神经模糊推理系统 (ANFIS)。关键词:自适应神经模糊推理系统 (ANFIS);最大功率点跟踪系统 (MPPT);镍氢电池 (Ni-MH);光伏 (PV);固体氧化物燃料电池 (SOFC) 1 引言
1。简介飞机中的分布式模拟是指相互联系的网络模拟的利用来复制各种航空系统的行为,功能和相互作用。这种方法用于在协作虚拟环境中对飞机技术,飞行程序和场景进行全面测试和分析。分布式仿真的实现涉及将不同飞机组件的模拟器或计算模型(例如飞行控件,拦截器,发动机和环境系统)链接到凝聚力网络。这些模拟实时通信,交换数据并响应模仿实际飞行条件的复杂性。飞机中分布式仿真的主要优点之一是它促进具有成本效益和全面的场景的能力。飞行员,维护人员和其他航空专业人员可以从事模拟飞行操作,紧急程序或系统故障,而无需访问实体飞机。分布式仿真增强了对现有系统的新技术的评估和验证。工程师和研究人员可以在受控的虚拟环境中对软件升级,系统集成或飞机设计进行彻底测试,然后再将其置于实际飞机上。这有助于确定潜在的问题,确保安全性并在部署前提高航空系统的性能。但是,飞机中的分布式模拟也提出了挑战。在分布式模拟之间实现同步,确保实时数据交换以及在相互连接模型之间保持一致性是至关重要的技术障碍。此外,必须解决网络安全问题,数据完整性和网络可靠性,以确保模拟环境的准确性和安全性。