我们通过实验证明,使用幺正压缩协议可以增强(放大)涉及量子谐振子的一大类相互作用。虽然我们的演示使用了单个被捕获的 25 Mg + 离子的运动状态和内部状态,但该方案通常适用于仅涉及单个谐振子的汉密尔顿量以及将振荡器与另一个量子自由度(如量子比特)耦合的汉密尔顿量,涵盖了量子信息和计量应用中大量感兴趣的系统。重要的是,该协议不需要了解要放大的汉密尔顿量的参数,也不需要压缩相互作用与系统动力学其余部分之间有明确的相位关系,这使得它在信号或相互作用的某些方面可能未知或不受控制的情况下非常有用,例如寻找新形式的暗物质。
量子通信网络依赖于使用单个光子在内的量子加密协议,包括量子密钥分布(QKD)。有关QKD协议安全性的关键要素是光子数相干(PNC),即零和一光子群之间的相位关系,这在很大程度上取决于激发方案。因此,要获得具有所需属性的空气量子,需要选择用于量子发射器的最佳泵送方案。半导体量子点产生高纯度和无法区分性的按需单个光子。利用量子点与刺激脉冲结合的两光子激发,我们证明了具有可控程度的PNC的高质量单光子的产生。我们的方法为量子网络中的安全通信提供了可行的途径。
LEiDA 的独特功能在于它能够捕捉瞬时耦合模式,这些模式是根据大脑区域之间的相位关系定义的。这些模式被概念化为类似于驻波模式的矢量,表示一些大脑区域相位共变而其他大脑区域相位反变的配置。通过根据特定时间间隔内发生的概率来描述这些模式,LEiDA 提供了一种统计上稳健的方法来比较不同条件、群体和个体之间的大脑动态(Cabral 等人,2017 年)。这种敏感性使 LEiDA 成为识别潜在神经标记(可测量且无偏的大脑动态特征)的宝贵工具。此类生物标记有望改善诊断、监测治疗结果(治疗诊断)和预测认知功能。
超导电子设备的发展需要仔细表征化妆电子电路的组件。超导弱环节是大多数超导电子组件的构建块,其特征是高度非线性的电流到相位关系(CPRS),通常不完全知道。最近的研究发现,约瑟夫森二极管效应(JDE)可能与嵌入超导干涉仪中的弱环节的弱环节的高谐波含量有关。这使JDE成为探索单谐波CPR以外的弱环节的谐波内容的天然工具。在这项研究中,我们介绍了双环超导量子干扰装置(DL-squid)的理论模型和实验特征,该设备嵌入了全金属超导型金属 - 金属 - 超导 - 超导体连接。由于三个弱连接的超电流的干扰,该设备在并联的三个弱环上的干扰而表现出JDE,并且可以通过两个磁通量调节该功能,这些磁通量充当实验旋钮。我们根据干涉仪臂的相对重量以及有关通量可调性和温度的实验表征进行了对设备的理论研究。
将 PS 引脚设置为低电平,IC 进入省电模式,因此电流消耗可限制为 10 µ A(最大值)。将 PS 引脚设置为高电平,则释放省电模式,IC 正常工作。此外,还包含间歇操作控制电路,有助于从省电模式平稳启动。一般来说,可以通过间歇操作(关闭或唤醒合成器)来节省功耗。在这种情况下,如果 PLL 不受控制地通电,则由于参考频率(fr)和比较频率(fp)之间未定义的相位关系,产生的相位比较器输出信号是不可预测的,并且在最坏的情况下可能需要更长的时间来锁定环路。为了防止这种情况,间歇操作控制电路在通电期间强制相位检测器输出有限的误差信号,从而保持环路锁定。在省电模式下,除省电功能必不可少的电路外,相应部分停止工作,然后电流消耗降至 10 µ A(最大值)。此时,Do 和 LD 变为与环路锁定时相同的状态。即,Do 变为高阻抗。VCO 控制电压自然保持在由 LPF 的时间常数定义的锁定电压。因此,VCO 的频率保持在锁定频率。
近来,需要高平均功率激光束的应用数量急剧增加,涉及大型项目,如空间清洁 [1]、航天器推进 [2]、粒子加速 [3],以及工业过程 [4] 或防御系统 [5]。激光光束组合是达到极高功率水平的最常用方法之一,特别是相干光束组合 (CBC) 技术 [6]。它们旨在对放大器网络传输的平铺激光束阵列的发射进行相位锁定,以产生高亮度的合成光束。由于实际激光系统(尤其是光纤激光系统)中阵列中光束之间的相位关系会随时间演变,因此这些技术必须通过伺服环路实时校正合成平面波的相位偏差。近年来,CBC 技术得到了广泛发展,探索了调整合成离散波前中各个相位的不同方法。它们可以分为两大类。在第一类中,测量阵列中光束的相位关系,然后进行校正 [7]。在第二种方法中,实际波前和期望波前之间的差异通过迭代过程得到补偿 [8]。在后一种情况下,优化算法驱动反馈回路,分析所有光束之间干涉的阵列相位状态的更多全局数据 [9,10]。这些技术通常更易于实施,所需电子设备更少,但需要更复杂的数值处理,其中一些技术在处理大量光束时速度会降低。最后一个问题与反馈回路中达到预期相位图所需的迭代次数有关,该迭代次数会随着要控制的相位数的增加而迅速增加。最近,人们研究了神经网络 (NN) 和机器学习,以期找到一种可能更简单、更有效的方法来实现相干光束组合。已发表的文献 [11] 中涉及的一种方案依赖于卷积神经网络 (VGG) 的直接相位恢复,然后一步完成相位校正,例如在自适应光学 NN 的开创性工作 [12]。 NN 用于将光束阵列干涉图样的强度(在透镜焦点处形成的远场或焦点外的图像、分束器后面的功率等)直接映射到阵列中的相位分布中。恢复初始相位图后,可以直接应用相位调制将相位设置为所需值。[11] 中报告的模拟表明,当阵列从 7 条光束增加到 19 条光束时,基于 CNN 的相位控制的精度会下降。这一限制在波前传感领域也得到了强调,因此 NN 通常仅用作初始化优化程序的初步步骤 [13]。另一种可能的方案是强化
Observation of half-integer Shapiro steps in graphene Josephson junctions Zhujun Huang 1 , Bassel Heiba Elfeky 2 , Takashi Taniguchi 3 , Kenji Watanabe 4 , Javad Shabani 2 , Davood Shahrjerdi 1 1 Electrical and Computer Engineering, New York University, Brooklyn, New York 11201, USA 2 Center for Quantum Information纽约大学物理系物理学,纽约10003,美国3国际材料纳米构造学院,国家材料科学研究所,1-1 Namiki Tsukuba,Ibaraki,Ibaraki,Ibaraki 305-0044,日本4,日本4,日本4研究中心,美国国家材料研究所,国家材料研究所,NINGAL SCOCY SCICACH,1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1。 jshabani@nyu.edu,davood@nyu.edu,我们研究六角硼硝化硼的AC Josephson效应封装石墨烯(BGB)Josephson交界器(JJS)。我们的实验揭示了具有高电子载体密度的N型状态中半级shapiro步骤的出现。我们将这种观察结果归因于石墨烯连接的栅极可调透明度。由于高连接透明度,我们的数值模拟与半智能夏皮罗步骤的外观一致,从而导致当前相位关系偏斜和高阶谐波的存在。
CK Sheng*、MGM Sabri、MF Hassan、EAGE Ali 马来西亚登嘉楼大学科学与海洋环境学院,21030 瓜拉尼鲁斯,登嘉楼,马来西亚 这项工作首次实施了基于光声 (PA) 技术的光热波表征,以研究在不同温度下退火的 Si 晶片 (Au/Si) 上沉积的金薄膜层的热特性和载流子传输特性。XRD 图案表明,在退火温度为 330 o C 时追踪到了 Au81Si19 相的亚稳态金 (Au) 硅化物,当温度进一步升高到 370 o C 时,该结构消失。结果表明,获得 Au/Si 结构的 PA 信号低于纯 Si 晶片。通过拟合 PA 信号相位关系阐明了 Si 和 Au/Si 的热特性和载流子传输特性。结果表明,随着退火温度的升高,Au/Si 的热扩散率和表面复合速度增加,复合寿命缩短。然而,当温度接近 370 o C 时,表面复合和热传输过程减弱,这可能是由于硅化物团簇的断裂造成的。(2021 年 7 月 20 日收到;2021 年 10 月 29 日接受)关键词:金硅化物,热退火,光声,热扩散率,复合
16. 摘要 根据 VNTSC 和全美航空快运运营商 Henson Aviation, Inc. 之间的合作研究与开发协议,1991 年 8 月在北卡罗来纳州温斯顿塞勒姆的全美航空维修站对波音 737 飞机的机身进行了剪切散斑演示检查。检查比较了剪切散斑技术与目前强制方法在检测机身脱粘方面的有效性。现代飞机机身采用粘合剂粘合,通常与铆钉结合使用。随着飞机的老化,粘合失效可能成为一个主要问题,因为它可能导致疲劳开裂、湿气侵入和随后的腐蚀。任何这些事件都可能导致机舱压力损失,有时还会导致灾难性的机身故障。检测脱粘的剪切散斑方法取决于飞机蒙皮在不同压力下的变形。当被相干光照射时,从蒙皮的任意两点反射的光的相位关系和强度会因这种变形而发生变化。可以检测到最小到 0.00025 毫米的表面变化,并将其显示为视野的实时图像。随着压力的变化,对连续图像进行比较可以解释粘合情况。对于此演示,剪切干涉发现了 31 处脱粘;超声波确认了 25 处脱粘。
混合纳米电子器件通过将超导体的宏观相位相干性与半导体器件的电荷密度控制相结合,为开发量子技术提供了一个有前途的平台。本论文重点研究混合纳米电子器件的建模及其在研究物质拓扑相和量子信息处理中的应用。论文的第一部分介绍了一种用于静电建模的新型无轨道方法。该方法显著提高了界面附近密度分布的精度,同时最大限度地降低了计算成本。接下来,我们使用基于对称性的非局部电导谱方法来研究多端器件中的传输测量。这种方法可以识别自旋轨道耦合的方向并检测非理想效应。然后,论文探讨了铁磁混合异质结构,它通过结合磁性绝缘体插入物来实现对有效磁场的局部控制。我们研究了超导和铁磁邻近效应的相互作用,并提出了一种用于展示拓扑超导的平面设计。我们还展示了如何使用该平台来实现可配置的 0-π 约瑟夫森结,以及如何实现非正弦电流相位关系。最后,本论文研究了以高次谐波为主的结在超导量子比特中的应用。我们提出并研究了一种耦合方案,用于在异质量子架构中纠缠奇偶校验保护的量子比特和可调谐通量的传输子。