在大N扩展中研究了显式奇偶校验破坏运算符的临界三维总螺旋模型和扭转模型的杂种。识别理论稳定的耦合常数的状态,并发现了该机制中固定点的标准。在一定范围的Chern-Simons水平上,我们发现稳定的电荷相位稳定,具有自发损坏的近似尺度不变性和参数较低的diLATON。Chern-Simons水平可以调整为稳定性边缘,从而产生了精确的尺度不变性,并伴有无质量的Dilaton。对于另一个狭窄的Chern-Simons级别,我们找到了一个保形窗口,该理论流向了Wilson-Fisher类似于Wilson-Fisher的固定点,并且是非对称非对称的非平均平价和时间差异和时间逆转三维的三维形式的连形理论的新颖(且罕见的)例子,具有标量,Spinor,Spinor,Spinor,Spinor和vector Fields和Vector Fields和Vector Fields和Vector Fields和Vector和Vector。
比较了CVI在Ga 2 O 3上沉积在Ga 2 O 3上的PD行为,以与甲醇的CO 2的氢化进行比较。ga 2 o 3仅是不活跃的,但是在2 O 3中具有良好的转换,并且选择性高达89%,至CH 3 OH。在2 O 3中,向催化剂中添加PD的影响相对较小,但是相反,将PD添加到Ga 2 O 3中,具有很大的作用,引起了对甲醇的高活性和选择性。两种氧化物形成PD Interallics -PD 2中的PD 2和PD 2 GA。然而,对于催化剂中,氧化物的厚(〜3 nm)叠加剂也有厚度(〜3 nm),而对于GA催化剂,则没有这样的覆盖层。因此,这就是为什么与ga。此外,研究了Pd和Zn共沉积对GA o o o₃o和IN₂O₃中的影响,以及支持形态的效果。在PD和Zn的共沉积后,还原后,3催化剂中的PD 2保持相位稳定,而PD 2 GA合金被PDZN取代,并改善了甲醇的产量。
未来量子互联网技术面临的一个关键挑战是连接大都市规模的量子处理器。本文,我们报告了相隔 10 公里的两个独立运行的量子网络节点之间的预示纠缠。两个承载金刚石自旋量子比特的节点通过部署的 25 公里光纤与中点站相连。我们通过将量子比特原生光子量子频率转换为电信 L 波段,并将链路嵌入可扩展的相位稳定架构中,从而使用抗损失的单击纠缠协议,将光纤光子损耗的影响降至最低。通过充分利用网络链路的全部预示能力以及长寿命量子比特的实时反馈逻辑,我们展示了在节点上传递预定义的纠缠态,而不管预示检测模式如何。我们的架构解决了关键的扩展挑战并与不同的量子比特系统兼容,为探索大都市规模的量子网络建立了一个通用平台。
熵相关的相位稳定可以允许多个主元素的组成复杂的固体解决方案。最初针对金属引入了大规模混合方法,最近已扩展到离子,半导体,聚合物和低维材料。多元混合可以利用散装材料以及界面和位错的新型随机,弱有序的聚类和降水状态。许多可能的原子配置提供了发现和利用新功能的机会,并创建了新的本地对称功能,订购现象和源自配置。这打开了一个巨大的化学和结构空间,在该空间中,未知的相位状态,缺陷化学,机制和性质(一些以前被认为是互斥的)可以在一种材料中进行核对。早期的研究集中在强度,韧性,疲劳和延展性等机械性能上。本综述将焦点转向多功能性能曲线,包括电子,电化学,机械,磁性,催化,与氢相关,不散热和热量特征。破坏性的设计机会在于将其中几个功能结合在一起,从而在不牺牲其独特的机械性能的情况下渲染高渗透材料。