摘要。近年来,相变材料(PCM)越来越受到不同热量存储和管理领域的关注。在建筑部门中,将其作为相变材料(PPCM)作为建筑包膜中的有效PCM引入,这表现出了显着的结果。然而,PPCM的导热率较差仍然是实验和数值研究中的最高缺点。在本文中,对paraffin的一般评估,它们的常见用途和应用,特别着眼于它们在构建信封应用中的潜力。此外,突出显示和评估了PPCM的一般和期望的特性。提出和讨论了较差的热导率PPCM的主要实际限制及其对PPCM性能的影响。相应地,用于提高较差的热导率的流行技术将分为四类:纳米颗粒的分散,扩展的石墨,金属泡沫和扩展表面技术(FINS)。总的来说,经过分析的研究工作表明,基于PPCM的建筑物包膜应用可以显着改善建筑物的热性能,从而减少热负载,节能和热舒适性。此外,采用增强技术对于改善PPCM在构建更好利用的应用中的热性能至关重要。本综述为新移民和感兴趣的方提供了有关PPCM在建筑领域的主要应用方面的明确愿景,以进一步调查技术商业化。
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
硅藻土、26 – 28 海泡石、29 凹凸棒石 30,31 和膨胀珍珠岩 32,33 也被用作支撑基质。膨润土具有多层结构,是一种常见的工业粘土,例如蒙脱石族粘土矿物。膨润土因其良好的物理和化学性质,被广泛用作功能填料、粘结剂、触变剂和催化剂。此外,膨润土具有良好的化学和热稳定性、优异的吸附特性和低廉的价格,使其适合于合成形状稳定的复合 PCM。在本文中,通过真空浸渍法制备了一种由 LA/Na-bentonite-1 制成的新型复合 PCM,它具有高潜热存储能力和适合节能系统的相变温度。以天然膨润土和 LA 为支撑材料
相变储能对能源的绿色、高效、可持续利用具有重要作用,利用相变材料储存太阳能,实现能量的时间和空间位移。本文综述了相变材料的分类及储能方向常用的相变材料,根据相变材料性质,列举了建筑中常用的相变材料及其封装方法,通过不同的封装方法强化热交换,解决材料泄漏问题,并通过对比分析总结出各种封装方法的优缺点,概述了宏封装和微封装对材料封装的影响,综述了不同封装方法的模拟和模型构建方法,致力于对建筑中相变材料和封装方法的选择进行比较分析,积极推动相变储能技术在建筑中的推广应用。关键词:综述,相变材料,热能储存,
1 摩德纳和雷焦艾米利亚大学工程科学与方法系,Via Amendola 2, 42122 Reggio Emilia, 意大利;silvia.barbi@unimore.it(SB);simona.marinelli@unimore.it(SM);bianca.rimini@unimore.it(BR);monia.montorsi@unimore.it(MM)2 摩德纳和雷焦艾米利亚大学可持续研究、高效能源转换、建筑能源效率、照明和家庭自动化综合技术领域工业研究和技术转让跨部门研究中心,EN & TECH,Via Amendola 2, 42122 Reggio Emilia, 意大利 3 费拉拉大学 TekneHub 实验室,Via Saragat 13, 44122 Ferrara, 意大利;sebastiano.merchiori@unife.it(SM); michele.bottarelli@unife.it (MB) 4 费拉拉大学建筑系,Via Quartieri 8, 44121 费拉拉,意大利 5 摩德纳和雷焦艾米利亚大学先进机械和汽车应用研究与服务跨系中心 INTERMECH-Mo.Re.,Via P. Vivarelli 10/1, 41125 摩德纳,意大利 * 通讯地址:francesco.barbieri1@unimore.it
传输项目也没有生产副产品,通常在全国范围内使用Egrid 1确定业务与平常的基线,而等效函数单元是拟议项目产生的电力。对于市场专门针对孤立市场(例如岛屿)的项目,可以将区域基础用于拟议项目的基准。温室气体避免是通过评估发电来确定的,该发电能够抵消基线电网排放概况的使用,该电网排放概况包括各种燃料源组合(包括可再生,煤炭,天然气等。)。
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
能源是每个国家可持续发展的重要参数。可再生能源是实现这一目标的主要途径之一。光伏 (PV) 发电厂是世界上大多数地区最受欢迎的可再生能源发电方法之一。光伏电池温度升高是已证实的弱点之一,会对其发电产生负面影响。为了降低温度对光伏电池的影响,已经提出了不同的方法。其中之一是使用相变材料 (PCM) 来防止光伏组件温度快速上升。PCM 吸收电池的部分温度,从而降低光伏温度。在 PV/T 领域提出了几种基于 PCM 的方法。本文的主要目的是介绍光伏组件的主要冷却方式,并回顾使用 PCM 冷却光伏组件的不同方法。对于每个部分,都提出了一些开发目的的建议。© 2020 期刊