应用程序类型是实现 AI 的不同方式,既可以为人类教练提供支持功能(教练辅助应用程序),也可以为直接教练服务(面向客户的教练互动教练服务应用程序)。教练服务应用程序旨在与传统教练能力紧密结合,例如建立信任、积极倾听和促进成长。由于这些应用程序可以独立于人类教练接触客户,因此必须经过广泛的测试和验证,以确保可靠、高质量的结果。
Talkative 的虚拟代理与我们的 Mitel 联络中心平台结合后,我们的 AI 解决率上升到了惊人的 90%
这意味着,支持 5G 的智能纺织品将更好地应用于需要高度可靠和时间关键的数据传输场景,例如医院或家庭的健康监测。得益于高速数据传输,5G 技术可以几乎即时地将重要的健康数据传输给医生。稳定的性能还有助于智能纺织品进一步与无人机集成,从而在搜索和救援或环境监测期间实现近乎实时的可操作数据通信。这些技术的未来应用,例如用于跑步服装的智能纺织品,可以增强 5G 信号并使其在偏远地区更加均匀,或者通过开发个人区域站等互补基础设施,应在进一步的研究中加以解决。这些纺织品可能会用于智能城市应用并部署在城市环境中,从而使实时导航或环境监测等功能更加有用。一般而言,5G 技术在不同环境中的多功能性证明了其能够提高智能纺织品的性能和跨行业应用。
ACP 积极参与面向患者的材料和流程的设计和审查,倡导患者体验。他们的职责包括审查知情同意书、患者教育材料和整体试验方案,同时考虑患者的需求和理解。这有助于最大限度地减少参与者的困惑和挫败感,降低退出的风险。ACP 以患者为中心的方法弥合了临床研究和患者护理之间的差距,提高了试验的有效性和肥胖研究中参与者的体验。
云计算是一种利用模型,通过提供对共享计算资源的自助访问,改变了组织处理信息的方式。这些资源包括服务器、存储和服务,可以快速部署,并且无需过多关注即可轻松扩展。云服务为企业提供了很大的空间,因为他们可以随心所欲地使用它们,也可以随着需求的增加或减少而缩减使用量,并且仍根据使用的云服务量付费。如今,亚马逊网络服务 (AWS)、微软 Azure 和谷歌云等云基础设施的迅猛发展和成本效益使云计算在数据驱动型行业中变得必不可少。处理吞吐量是处理大数据和物联网时的另一个相关标准,因为会产生大量连续数据,必须实时处理。
人类皮肤的质地受外部和内部因素的影响,皱纹的变化最直接反映了皮肤的状态。皮肤粗糙度主要用于量化皮肤的皱纹特征。因此,对皮肤粗糙度的有效定量在护肤,医疗和产品开发中至关重要。本研究提出了一种使用光学相干断层扫描(OCT)与卷积神经网络(CNN)结合的方法来估计皮肤表面粗糙度的方法。通过粗糙度标准板验证了所提出的算法。然后,实验结果表明,包括算术平均粗糙度和粗糙度在内的皮肤表面粗糙度取决于年龄和性别。基于OCT的建议方法的优点是,它可以降低皮肤表面自然曲率对粗糙度的影响。此外,该方法与表皮厚度和皮肤衰减系数结合在一起,用于皮肤特征的多参数表征。它可以看作是理解老化过程并制定维护和增强皮肤健康和外观的策略的潜在工具。
确保电力系统不仅能够处理即时波动,而且在长期环境和运行不确定性面前也具有稳健性和适应性的方法(Bon fi glio et al., 2024; Ding et al., 2024)。传统上,电力系统的设计和运行是为了处理可预测和稳定的电源,主要是化石燃料。然而,受环境问题和技术进步的推动,向可再生能源的转变破坏了这种稳定性(Li Z. et al., 2024)。可再生能源本质上是间歇性的和不可预测的,这给发电、输电和配电带来了重大挑战。风能和太阳能产出的随机性意味着电力系统现在必须管理电力供应的重大波动,这可能会损害供电可靠性和电网的经济效率(Li S. 等人,2024 年;Li 等人,2022 年)。这些不稳定能源的整合促使人们重新评估传统的电力系统管理策略。当前的系统必须发展到不仅能管理这些波动,而且还能有效地预测和适应这些波动。这引起了人们对开发先进数学模型和优化技术的浓厚兴趣,这些模型和优化技术可以在可再生能源整合不断增加的背景下增强电力系统的运行弹性(Ruan 等人,2024 年)。本研究的主要目标是开发一个强大的框架,不仅可以适应可再生能源产出的变化和不确定性,还可以优化输电系统的运行和成本效益。通过利用尖端的稳健优化技术与在线学习算法相结合,这项工作旨在创建一种动态且自适应的管理策略,以确保系统的实时可靠性和效率。本文的贡献可总结如下:
b'靶标发现对于药物开发至关重要,尤其是对于复杂的慢性疾病。高通量技术的最新进展和生物医学数据的爆炸式增长凸显了计算药物可药性预测方法的潜力。然而,大多数当前方法依赖于基于序列的特征和机器学习,这通常面临与手工制作的特征、可重复性和可访问性相关的挑战。此外,原始序列和蛋白质结构的潜力尚未得到充分研究。在这里,我们使用深度学习技术利用蛋白质序列和结构,揭示蛋白质序列,特别是预训练的嵌入,比蛋白质结构更具信息量。接下来,我们开发了 DrugTar,这是一种高性能深度学习算法,将来自 ESM-2 预训练蛋白质语言模型的序列嵌入与蛋白质本体相结合以预测药物可药性。DrugTar 实现了曲线下面积和精确召回曲线值高于 0.90,优于最先进的方法。总之,DrugTar 简化了靶标发现,这是开发新型疗法的瓶颈。'
新发传染病反复爆发的原因有很多。在本文中,我们开发了一个数学模型来说明人群行为适应和适应实施延迟如何响应感知到的感染风险,从而导致反复爆发的模式。我们考虑感染爆发的早期阶段,此时尚未达到群体免疫,不考虑病原体突变,并且排除季节性作为主要因素。我们推导出一个传播动力学模型,该模型结合了疾病传播有效接触的更新方程(单位时间接触率乘以每次接触的传播概率)。该模型包含两个关键参数:人群行为适应灵活性指数和行为改变实施延迟。我们表明,当行为改变实施延迟达到临界值时,感染数量开始在由人群行为适应灵活性决定的平衡中振荡。我们还表明,后续高峰的感染人数可能会超过第一个高峰的感染人数。这是在 COVID-19 大流行早期,在出现令人担忧的变异株之前,在全球范围内观察到的间接现象,也是在早期干预措施成功阻止大规模疫情爆发的地区观察到的 Omicron 变异株引发的疫情浪潮现象。我们的模型和分析可以部分解释这些观察结果。
摘要 — 想象语音是一种心理任务,个人在内部模拟提示的发音而无需实际发声。最近,由于其作为脑机接口 (BCI) 范例的简单性和直观性,它引起了广泛关注。因此,从脑信号中解码想象语音成为一项关键挑战,需要使用文献中记录的各种信号处理和机器学习技术来解决。最常用的神经成像方法是脑电图 (EEG),因为它具有非侵入性、低成本和高时间分辨率。最近从 EEG 信号中解读想象语音的尝试部署了卷积神经网络 (CNN) 架构,例如浅层卷积网络、深度卷积网络和 EEGNet,而其他尝试使用交叉协方差 (CCV) 矩阵作为信号表示的替代形式。我们的新架构将 EEGNet 与 CCV 矩阵相结合,使用 SPDNet 架构中提出的双线性变换从后者中提取判别特征。我们的方法在两个公开可用的数据集上得到了验证,并且表现出与最先进的性能相当的性能,同时大大超越了两个数据集上的 EEGNet 性能。