与经典相关(即非量化)。所有这些应用都需要高速开关,这可以通过光学信号的相位调制来实现。现有技术提供低损坏或高带宽解决方案,但并非同时提供。例如,纤维集成的电流调节器在商业上成熟,并且可以在纳秒时间尺度上提供相位调制。nev-这些设备的插入损失增加了一个实际的开销:减轻这些损失需要增加输入功率,中间放大器和废热管理[6]。此外,提高开关速度的功能可能导致现有基于半导体的电信设备的过时,从而推动了对全光开关技术的研究[7]。因此,在一系列应用领域中,需要更有效的光学调制技术。光子量子计算代表了我们对这项工作的实践动机。此平台出于多种原因吸引人,包括所有或多个组件的室温操作,高时钟率,高连通性,对流浪场不敏感和模块化结构。,但仍然是一个关键的技术挑战:以高速和极低的损失进行切换和动态重新旋转光子的要求。这是用于光子量化计算过程的各种过程中的重要阶段,例如实现:循环记忆[8,9],同步[10]或单光子源的多重[11,12,13]和图形状态生成[14]。放大量子量子相干性,因此无法使用
摘要:控制量子光脉冲的时间模式形状具有广泛的范围应用于量子信息科学和技术。技术来控制带宽,允许在时间和频域中移动,并执行模式 - 选择性束 - 分解器样转换。但是,目前没有方案可以在时间模式上执行目标多模统一转换。在这里,我们提出了一种实用方法,以实现时间模式的一般转变。从理论上讲,我们可以在时间和频域中使用一系列相位操作来执行时间模式上的任何统一转换。数值模拟表明,使用实验可行的规格可以以超过95%的保真度执行时间模式上的几个关键转换。