日期:2019年1月15日:Nagoya City University的药学学院的神经药理学特殊研讨会:Uchitani Masafumi隶属关系:演员/电影导演标题:我无法理解,除非我绕行 - 除非我进行了一场挑战 - 除非我进行了一场斗争 - 与药物成瘾的战斗 - 护理领域:Neurophivef Field:Neuropharmanology of Neuropharmanology of Neuropharmology of Neuropharmology jim tocile jim KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM IREDERIENIRE:2019年1月:2019年Kazutetsu日期:2019年1月19日讲座:第50 Aichi县糖尿病治疗研究小组讲师:Koyama Sachiko隶属关系:Nagoya第一红十字会医院药理学系职位:如何处理糖尿病治疗?与接受癌症治疗的患者相互作用:Ishikawa Hiroshi隶属关系:Shizuoka省Shizuoka癌症中心标题:癌症化学治疗期间的糖尿病患者的药物干预:OHASHI KEN KEN KEN KEN AFRITIANIT Garden City Premium Nagoya Lucent Tower职业:Kikuchi Chigusa等。 1月25日,2019年1月25日:日本药品学会Tokai分会的特别讲座:副教授Hirota Junji隶属关系:东京技术研究所:静脉曲张神经元护理领域的命运机制:Pathobio other Field:Pathobiocrist内戈亚市大学医学中心医院医院标题:癫痫的药物治疗:Makino Toshiaki日期:2019年1月27日至28日讲座:第三名纳戈亚城市大学 - 里卡妇女大学联合研讨会地点:Nagoya City University,Nagoya City University,Sato Masafumi
生物活性脂质具有各种功能,在活生物体中存在,脂质代谢的失调通常与人类疾病有关。因此,澄清其时空动力学和分子水平的调节可能会导致新型治疗和/或早期诊断的发展。我们旨在构建一个脂肪组地图集,以捕获组织中脂质多样性,分布,定位和脂质修饰,并旨在阐明如何在体内产生,调节,识别和功能在体内产生,调节,识别和功能表达脂质多样性及其本地化,并由其破坏引起的疾病。迄今为止,我们已经开发了一种基于LC/MS/MS的靶向脂质组学来全面监测脂肪酸代谢物,并确定了来自N-3多不饱和脂肪酸的新型代谢途径和生物活性介质。这些具有抗炎和组织保护作用的内源性脂质介质可能会导致疾病的新疗法发展,而当怀疑不受控制的炎症是发病机理的关键成分时。也在Riken-Ims中,我们正在建立一个技术平台,以阐明和可视化特定脂质对多细胞系统动力学和功能创造的本地环境的影响。
在各种各样的研究环境中,微扫视和其他注视眼球运动的记录为实际问题提供了见解和解决方案。本文,我们回顾了有关注视眼球运动(尤其是微扫视)在应用和生态有效场景中的文献。最近的技术进步使得在观察者执行各种任务时,可以在现实世界中进行非侵入式注视眼球运动记录。因此,注视眼球运动测量已在多种现实世界场景中获得,例如与驾驶员疲劳、宇航员前庭感觉剥夺和精英运动员训练等有关。本文,我们介绍了注视眼球运动研究的实际应用的最新进展,研究了其未来的潜在用途,并讨论了在现有眼球运动检测技术中加入微扫视测量的好处。当前证据支持将注视眼球运动测量纳入现实世界环境,作为开发新的或改进的眼球运动评估工具的一部分。随着价格实惠的高速、高空间分辨率眼动仪变得越来越普遍,注视眼球运动测量在现实世界中的应用只会变得越来越大、越来越广泛。
1,2,3,4 Mahaguru技术研究所,Kattachira摘要:人类计算机互动(HCI)重点关注人员与计算机之间的界面和互动。 HCI的主要目标是设计一个使人们以新颖方式与计算机互动的环境。 人们用来互动的最重要方法之一是眼动和眼睛眨眼,尤其是对于身体残疾的人。 本文基于眼睛眨眼和面部运动提出了一种屏幕上的计算机交互方法。 这两个主要组成部分是图像处理,以检测眼睛,面部运动和闪烁的眼睛。 面部图像由计算机的相机捕获,然后用于确定眼睛位置和尺寸。 这是根据著名的“ 68点”和面部检测方法的面部网格系统完成的。 在此系统中使用眼睛眨眼来输入类似于用户按下键盘上的“ Enter”按钮的字符,并且使用面部运动来移动光标类似于使用鼠标的使用。1,2,3,4 Mahaguru技术研究所,Kattachira摘要:人类计算机互动(HCI)重点关注人员与计算机之间的界面和互动。HCI的主要目标是设计一个使人们以新颖方式与计算机互动的环境。人们用来互动的最重要方法之一是眼动和眼睛眨眼,尤其是对于身体残疾的人。本文基于眼睛眨眼和面部运动提出了一种屏幕上的计算机交互方法。这两个主要组成部分是图像处理,以检测眼睛,面部运动和闪烁的眼睛。面部图像由计算机的相机捕获,然后用于确定眼睛位置和尺寸。这是根据著名的“ 68点”和面部检测方法的面部网格系统完成的。在此系统中使用眼睛眨眼来输入类似于用户按下键盘上的“ Enter”按钮的字符,并且使用面部运动来移动光标类似于使用鼠标的使用。
1 博士生,佛罗里达大学 Herbert Wertheim 工程学院可持续基础设施与环境工程学院(ESSIE),美国佛罗里达州盖恩斯维尔 电子邮件:shiyangming@ufl.edu 2 本科生,香港城市大学建筑及土木工程系,香港。 电子邮件:yzheng44-c@my.cityu.edu.hk 3 副教授,佛罗里达大学 Herbert Wertheim 工程学院可持续基础设施与环境工程学院(ESSIE),美国佛罗里达州盖恩斯维尔(通讯作者)。 电子邮件:eric.du@essie.ufl.edu 4 博士生,佛罗里达大学 Herbert Wertheim 工程学院可持续基础设施与环境工程学院(ESSIE),美国佛罗里达州盖恩斯维尔 电子邮件:qizhu@ufl.edu 5 博士德克萨斯州农工大学建筑学院建筑科学系学生,德克萨斯州大学城。电子邮箱:liux2017@tamu.edu
瑜伽近年来已成为世界各地许多人生活的常规部分。这对必要的瑜伽姿势进行了科学研究。瑜伽姿势估计是一种计算机视觉技术,可以预测人体的位置或姿势。姿势检测算法已被证明可用于姿势识别和提高瑜伽姿势的准确性。在当今的现代时代,ML和DL技术已被证明对于对象发现任务很重要。我们可以有效地使用该模型来识别不同重要的身体部位并实时估算用户姿势。为实现这一目标,我们用不同的瑜伽姿势图像训练模型。当图像被送入姿势估计模型时,它通过执行特征提取来分析图像并识别身体部位,表明其在屏幕上的位置。此外,该模型为每个检测提供了一个置信值,表明给定图像正确识别为输入的可能性。我们使用了不同的瑜伽姿势,例如骆驼姿势,下dog姿势,女神姿势,木板姿势,树姿势,Warrior2姿势来训练该模型,这使其在识别各种姿势方面非常准确。这项研究的主要目标是使用此检测技术来帮助人们确定他们正在执行的瑜伽姿势。此外,我们还解决了当前系统的缺点,例如它们的准确性差,高处理成本以及对各种身体形状和瑜伽样式的适用性限制。在本文中,我们提出了一种基于卷积神经网络(CNN)的方法来创建瑜伽立场检测系统。建议的技术旨在通过提供更精确,有效和广泛适用的解决方案来识别瑜伽姿势和产生反馈的方法,以改善当前系统的缺点。总体而言,基于技术的工具在我们的研究中的应用可能有助于设计更多定制和成功的瑜伽实践。我们的发现可以帮助构建虚拟助手和智能瑜伽垫等应用程序,从而改善瑜伽实践的可访问性和个性化。
目前在全国范围内缺乏小儿眼科医生,导致儿童眼护理的地理差距很大。位于加州大学戴维斯分校眼中中心的儿科服务很荣幸能为全州各地的儿童提供服务 - 从北至俄勒冈边境,西部到海岸,一直到中央山谷。我们的提供者照顾患有常见眼科问题的儿童,例如斜视(眼部未对准),弱视(通常称为“懒惰的眼睛”)折射率错误(近视或远视性)和鼻腔围绕导管障碍(从出生后撕裂)。我们还为患有较不常见的视觉威胁性问题(例如先天性或少年性白内障)的儿童提供护理。最后,儿科服务参与了早产视网膜病的治疗,这是早产儿的潜在盲目疾病,需要经过特殊培训的提供者及时有效治疗。当我们对待这些常见和严重的条件时,我们的集体目的是使孩子保持对话的中心,并让家人接受孩子的待遇和持续护理。
近年来,随着互联网的普及和计算机计算能力的提升等信息技术的进步,人工智能技术的发展不断加速,我们看到人工智能技术所能实现的计算处理的精细化程度不断提高。 此外,随着人工智能技术的进步,所谓的生成性人工智能取得了显著进展,它可以根据用户的指令生成各种形式的内容,现在可以创建与人类自己创建的内容无法区分的内容。不仅有研究人员和企业参与生成型AI的开发,还提供一般用户可轻松使用的服务和软件的企业也不断涌现,以生成型AI的使用为中心进行创作活动的创作者也不断涌现。 在此背景下,关于生成型人工智能,版权所有者等担心人工智能在学习和生成数据时可能会侵犯其版权,人工智能开发者等担心开发人工智能时可能会侵犯版权或可能会创造出侵犯版权的人工智能,人工智能用户则担心使用人工智能可能会无意中侵犯版权。
近年来,随着互联网的普及和计算机计算能力的提升等信息技术的进步,人工智能技术的发展不断加速,我们看到人工智能技术所能实现的计算处理的精细化程度不断提高。 此外,随着人工智能技术的进步,所谓的生成性人工智能取得了显著进展,它可以根据用户的指令生成各种形式的内容,现在可以创建与人类自己创建的内容无法区分的内容。不仅有研究人员和企业参与生成型AI的开发,还提供一般用户可轻松使用的服务和软件的企业也不断涌现,以生成型AI的使用为中心进行创作活动的创作者也不断涌现。 在此背景下,关于生成型人工智能,版权所有者等担心人工智能在学习和生成数据时可能会侵犯其版权,人工智能开发者等担心开发人工智能时可能会侵犯版权或可能会创造出侵犯版权的人工智能,人工智能用户则担心使用人工智能可能会无意中侵犯版权。 此外,在2023年5月举行的G7广岛峰会上,认识到需要立即评估在各国和各行业中日益突出的生成性人工智能所带来的机遇和挑战,并通过G7工作组启动了“广岛人工智能进程”,就生成性人工智能以及包括版权在内的知识产权保护等议题进行讨论。1此外,日本的AI战略委员会专家组同月编制了AI2.0相关问题临时概要,其中也提及了与版权相关的问题,并呼吁考虑采取必要的应对措施。 今年6月制定的《知识产权振兴计划2023年3期》也指出,关于生成型人工智能与著作权的关系,将从促进人工智能技术进步和保护创作者权利的角度,识别和分析具体案例,组织法律思考,并考虑必要措施。 版权法的解释,不仅仅是与生成性人工智能相关的解释,本质上应该根据每个个案的具体情况留给司法判断。但是,截至本报告撰写时,直接处理生成型人工智能与版权之间关系的判例和案件仍然很少。为了缓解上述对生成型人工智能与版权之间关系的担忧,我们认为,不应仅仅等待判例和案件的积累,而应该提出一定的解释方法。 因此,文化事务委员会著作权部法制分科(以下简称“分科”)将与创作者、表演者等权利人、开发和提供生成性AI服务的企业、生成性AI的用户等相关方举行听证会,并将报告AI战略会议、AI时代知识产权审查委员会4(内阁府知识产权战略推进事务局)等其他会议的讨论情况。