研究正常或病理条件下的大脑动态已被证明是一项具有挑战性的任务,因为对于最佳方法没有统一的共识。在本文中,我们提出了一种基于传递熵的方法来研究健康受试者在睁眼(EO)和闭眼(EC)静息状态下不同大脑半球之间的信息流。我们使用了一个模拟临床环境中技术条件的实验装置,并从 65 Hz 采样率的 24 通道脑电图(EEG)短记录中收集数据集。我们的方法考虑了两种条件下的半球间和半球内信息流分析,并依赖于从 EEG 通道之间的传递熵估计计算出的 4 个指标。这些指标提供有关活动连接的数量、强度和方向性的信息。我们的结果表明,在 EC 条件下,alpha、beta1 和 beta2 频带的信息传递有所增加,但在任何一种条件下,半球间信息移动都没有优先的方向。这些结果与之前报道的以更高采样率进行更密集的 EEG 记录的研究一致。总之,我们的方法表明,在 EO 和 EC 静息状态下,大脑信息传递的动态存在显著差异,这也可以应用于常规临床治疗。
招募了36名墨西哥籍慢性神经性疼痛患者(8名男性和28名女性),平均年龄为44±13.98岁,在睁眼和闭眼静息状态下记录EEG信号。每种状态记录5分钟,总记录时间为10分钟。每位患者报名参加研究后都会获得一个ID号,他们需要根据该ID号回答painDETECT问卷,作为神经性疼痛的筛查过程以及临床病史。记录当天,患者回答了简明疼痛量表,作为疼痛对日常生活干扰的评估问卷。使用Smarting mBrain设备注册了22个按照10/20国际系统定位的EEG通道。EEG信号以250 Hz采样,带宽在0.1到100 Hz之间。本文提供了两种类型的数据:(1)静息状态下的原始脑电图数据;(2)两次试验的患者报告。
摘要:最近,使用脑电图 (EEG) 进行音频信号处理中的模式识别引起了广泛关注。眼部情况(睁眼或闭眼)的变化反映在 EEG 数据的不同模式中,这些数据是从一系列情况和动作中收集的。因此,从这些信号中提取其他信息的准确性在很大程度上取决于在采集 EEG 信号期间对眼部情况的预测。在本文中,我们使用深度学习矢量量化 (DLVQ) 和前馈人工神经网络 (F-FANN) 技术来识别眼部情况。由于 DLVQ 能够学习代码约束的码本,因此在分类问题上优于传统 VQ。在使用 k 均值 VQ 方法初始化后,DLVQ 在 EEG 音频信息检索任务上测试时表现出非常出色的性能,而 F-FANN 将眼部状态的 EEG 音频信号分类为睁眼或闭眼。与 F-FANN 相比,DLVQ 模型具有更高的分类准确度、更高的 F 分数、精确度和召回率,以及更出色的分类能力。